Pacific Journal of Mathematics

A REPRESENTATION THEOREM FOR ISOMETRIES OF C(X, E)

KA-SING LAU

Vol. 60, No. 1 September 1975

A REPRESENTATION THEOREM FOR ISOMETRIES OF C(X, E)

Ka-Sing Lau

Let X,Y be compact Hausdorff spaces and let E,F be Banach spaces such that their duals are strictly convex. We show that a linear map $T\colon C(X,E)\to C(Y,F)$ is an isometric isomorphism if and only if there exists a homeomorphism $\phi\colon Y\to X$ and a continuous map λ from Y to the set of isometric isomorphisms from E onto F (with the strong topology) such that $Tf(y)=\lambda(y)\cdot f(\phi(y))$ for all $y\in Y,f\in C(X,E)$.

1. Suppose E is a Banach space and X is a compact Hausdorff space, we use C(X, E) to denote the Banach space of continuous functions from X into E. In [3], Jerison gave a generalization of the Banach-Stone theorem, he showed that if X, Y are compact Hausdorff spaces, E is a strictly convex space and $T: C(X, E) \rightarrow C(Y, E)$ is an isometric isomorphism, then there exists a homeomorphism $\phi: Y \rightarrow X$, a continuous map λ from Y into the set of rotations of E (i.e. the set of isometric isomorphisms from E onto E) under the strong topology such that for each $f \in C(X, E)$, $y \in Y$, we have

$$Tf(y) = \lambda(y) \cdot f(\phi(y)).$$

Makai [5] and Sundaresan [6] made some improvements of the result. In this paper, we will consider the isometric isomorphisms between C(X, E) and C(Y, F) where E^*, F^* are strictly convex spaces. Let E, F be Banach spaces, we use S(E) to denote the unit ball of $E, \partial S(E)$ the set of extreme points of S(E), L(E, F) the set of bounded linear operators from E into F and I(E, F) the set of isometric isomorphisms from E into F. We will show

THEOREM. Suppose X, Y are compact Hausdorff spaces and E, F are Banach spaces with E^* , F^* strictly convex. Let

$$T: C(X, E) \rightarrow C(Y, F)$$

be an isometric isomorphism; then there exist a homeomorphism $\phi: Y \to X$ and a continuous map $\lambda: Y \to I(E, F)$ (with the strong topology) such that

(*)
$$Tf(y) = \lambda(y) \cdot f(\phi(y)) \quad \text{for all } y \in Y, f \in C(X, E).$$

Conversely, if we are given ϕ and λ as above, then there exists an isometric isomorphism T from C(X, E) onto C(Y, F) satisfies (*).

We remark that the theorem will not be true for arbitrary Banach spaces (c.f. §3).

2. We will begin by showing the converse part of the theorem. The map T defined by (*) is obviously linear and continuous. For $g \in C(Y, F)$, define $\tau: X \to I(F, E)$ by $\tau(x) = (\lambda(\phi^{-1}(x)))^{-1}$ and let $f \in C(X, E)$ be defined by $f(x) = \tau(x) \cdot g(\phi^{-1}(x))$ for all $x \in X$. Then Tf = g and T is onto. To show that T is an isometry, take any $f \in C(X, E)$, then

$$||Tf|| = \sup\{||Tf(y)|| : y \in Y\}$$

$$= \sup\{||\lambda(y) \cdot f(\phi(y))|| : y \in Y\}$$

$$= \sup\{||f(\phi(y))|| : y \in Y\}$$

$$= \sup\{||f(x)|| : x \in X\}$$

$$= ||f||.$$

The proof of the first part is divided into the subsequent lemmas.

LEMMA 1. Let X be a compact Hausdorff space and let E be a Banach space; then the set of extreme points of $S(C(X, E)^*)$ is of the form $\delta_{x,u}$ where $x \in X$, $u \in \partial S(E^*)$, and

$$\delta_{x, u}(f) = u(f(x)), f \in C(X, E)$$

Proof. C.f. [4], Theorem 3.2.

Under the assumption of the Theorem, the adjoint map $T^*: C(Y,F)^* \to C(X,E)^*$ is also an isometric isomorphism. It sends the extreme points of $S(C(Y,F)^*)$ onto the set of extreme points of $S(C(X,E)^*)$, i.e., for $y \in Y$ $v \in \partial S(F^*)$, $T^*(\delta_{y,v})$ is of the form $\delta_{x,u}$, where $x \in X$ and $u \in \partial S(E^*)$.

- LEMMA 2. (i) For any $y \in Y, v \in F^*$, $T^*(\delta_{y,v})$ is of the form $\delta_{x,u}$ where $x \in X, u \in E^*$.
- (ii) Let $y \in Y$, $v, \bar{v} \in F^*$ and let $T^*(\delta_{y, v}) = \delta_{x, u}, T^*(\delta_{y, \bar{v}}) = \delta_{\bar{x}, \bar{u}}$; then $x = \bar{x}$.

(iii) For each fixed $y \in Y$, the map $v \to u$, $F^* \to E^*$ where $T^*(\delta_{y,v}) = \delta_{x,u}$ is an isometric isomorphism. Moreover, this map is weak * continuous.

Proof. Since F^* is strictly convex, every point of norm 1 in F^* is an extreme point of $S(F^*)$. By the preceding remark, (i) holds for all points of norm 1. Note also that $\alpha \delta_{y,v} = \delta_{y,\alpha v}$ for all $\alpha \in R$, so (i) is true for all $v \in F^*$. To prove (ii), suppose $x \neq \bar{x}$ and consider $T^*(\delta_{y,v+\bar{v}})$; by (i), it is of the form $\delta_{x',u'}$ for some $u' \in E^*$, $x' \in X$ and

$$\delta_{x',\,u'}=\delta_{x,\,u}+\delta_{\bar{x},\,\bar{u}}.$$

Note that $x' \neq x, \bar{x}$. Indeed, if x' = x (or \bar{x}), then we can choose $f \in C(X, E)$, $z \in E$ such that $f(\bar{x}) = z$, $\bar{u}(z) \neq 0$, but f(x) = 0, then

$$\delta_{x', u'}(f) \neq \delta_{x, u}(f) + \delta_{\bar{x}, \bar{u}}(f).$$

Since $x' \neq x, \bar{x}$, by a similar kind of argument, it is easily shown that there exists a $g \in C(X, E)$ such that

$$\delta_{x', u'}(g) \neq \delta_{x, u}(g) + \delta_{\bar{x}, \bar{u}}(g).$$

a contradiction. In (iii), it follows from (i), (ii) that the map is well defined and linear. To show that it is onto, we note that if $T^*(\delta_{y_1,v_1}) = \delta_{x,u_1}$, $T^*(\delta_{y_2,v_2}) = \delta_{x,u_2}$, then $y_1 = y_2$ (for we need only consider $(T^*)^{-1}$ as in (ii)). For $u_1 \in E^*$, consider δ_{x,u_1} where $x \in X$ is such that $T^*(\delta_{y_1,v_1}) = \delta_{x,u_1}$, $v \in F^*$ (by (ii), the point x is well defined). Since T^* is onto, there exists $\delta_{y_1,v_1} \in C(Y,F)^*$ such that $T^*(\delta_{y_1,v_1}) = \delta_{x,u_1}$. By the above remark, $y_1 = y$ and hence $T^*(\delta_{y,v_1}) = \delta_{x,u_1}$ and v_1 is the preimage of v_1 . To show that the map is an isometry, we need only observe that for any $v \in F^*$ such that ||v|| = 1, the point v_1 is an extreme point of v_2 of v_3 and v_4 is an extreme point of v_4 and v_4 is a

From Lemma 2 (ii), we can define a map $\phi: Y \to X$ such that $\phi(y) = x$. For each $y \in Y$, we let $\lambda(y)^*: F^* \to E^*$ be the map in Lemma 2 (iii). Since $\lambda(y)^*$ is weak* continuous, it induces a map $\lambda(y): E \to F$ which is also an isometric isomorphism. Hence we can define the map $\lambda: Y \to I(E, F)$ with $y \to \lambda(y)$. For any $v \in F^*$, $y \in Y$ and $f \in C(X, E)$, we have

$$v(Tf(y))$$

$$= \delta_{y, v}(Tf) = T^*(\delta_{y, v})f$$

$$= (\delta_{\phi(y), \lambda(y)^*v})(f) = (\lambda(y)^*v)(f(\phi(y)))$$

$$= v(\lambda(y) \cdot f(\phi(y))).$$

Thus

$$Tf(y) = \lambda(y) \cdot f(\phi(y)).$$

It remains to show

LEMMA 3. The map ϕ is a homeomorphism.

Proof. That ϕ is onto follows from the fact T^* sends the set of elements of the form $\delta_{y,\,v},\,y\in Y,\,v\in F^*$ onto the set of elements of the form $\delta_{x,\,u,\,X}\in X,\,u\in E^*$. That ϕ is one-to-one follows from the remark in the proof of the onto part in Lemma 2 (iii). It remains to show that ϕ is continuous. $(\phi^{-1}$ will then be continuous since X,Y are compact Hausdorff spaces). Let $\{y_\alpha\}$ be a net in Y converging to y. Fix $v\in F^*$ and let $T^*(\delta_{y_\alpha,\,v})=\delta_{x_\alpha,\,u_\alpha}$; then $\{\delta_{x_\alpha,\,u_\alpha}\}$ converges weak* to $T^*(\delta_{y,\,v})=\delta_{x,\,u}$. We want to show that $\{x_\alpha\}$ converges to x. Let $\{x_\beta\},\{u_\beta\}$ be subnets of $\{x_\alpha\},\{u_\alpha\}$ which converge weak* to \bar{x},\bar{u} respectively. For f in C(X,E),

$$\begin{split} \left| \delta_{x,u}(f) - \delta_{\bar{x},\bar{u}}(f) \right| \\ & \leq \left| \delta_{x,u}(f) - \delta_{x_{\beta},u_{\beta}}(f) \right| + \left| \delta_{x_{\beta},u_{\beta}}(f) - \delta_{\bar{x},u_{\beta}}(f) \right| \\ & + \left| \delta_{\bar{x},u_{\beta}}(f) - \delta_{\bar{x},\bar{u}}(f) \right| \\ & \leq \left| \delta_{x,u}(f) - \delta_{x_{\beta},u_{\beta}}(f) \right| + \left| u_{\beta}(f(x_{\beta})) - u_{\beta}(f(\bar{x})) \right| \\ & + \left| u_{\beta}(f(\bar{x})) - \bar{u}(f(\bar{x})) \right| \\ & \leq \left| \delta_{x,u}(f) - \delta_{x_{\beta},u_{\beta}}(f) \right| + \left\| f(x_{\beta}) - f(\bar{x}) \right\| \|v\| \\ & + \left| u_{\beta}(f(\bar{x})) - \bar{u}(f(\bar{x})) \right|. \end{split}$$

The right side converges to zero as $\{x_{\beta}\}$ and $\{u_{\beta}\}$ converge to \bar{x} and \bar{u} respectively. This shows that $x = \bar{x}$. The net $\{x_{\alpha}\}$ is in the compact set X and has only one limit point x, thus $\{x_{\alpha}\}$ converges to x.

LEMMA 4. The map $\lambda: Y \to I(E, F)$ is continuous with respect to the strong topology on I(E, F).

Proof. Let $\{y_{\alpha}\}$ be a net in Y converging to y_0 . For each z in E, we can find an f such that f(x) = z for all x in X, thus

$$\|\lambda(y_{\alpha})z - \lambda(y_0)z\| = \|Tf(y_{\alpha}) - Tf(y_0)\|.$$

Since Tf is in C(Y, F), the right side converges to 0 as $\{y_{\alpha}\}$ converges to y_0 . This shows that λ is continuous.

3. We give an example which shows that the theorem is not true if we do not assume that E^* , F^* are strictly convex. Let X be a compact Hausdorff space and let R^2 be the two dimensional linear space with the maximum norm $(\|(r,s)\| = \max\{|r|, |s|\}, r, s \in R)$. It is clear that $C(X, R^2)$ is a Banach lattice with an order unit f_e where $f_e(x) = (1, 1)$ for all x in X. Also the norm satisfies $\|f \vee g\| = \|f\| \vee \|g\|$ for all f, g in the positive cone of $C(X, R^2)$. By Kakutani's representation theorem of abstract f spaces [2], f is isometrically isomorphic to f for some compact Hausdorff space f and f theorem does not hold.

REFERENCES

- 1. N. Dunford and J. Schwartz, Linear Operators, Vol. 1, New York, 1958.
- 2. S. Kakutani, Concrete representations of abstract (M) spaces, Ann. of Math., 42 (1941), 994-1024.
- 3. M. Jerison, The space of bounded maps into a Banach Space, Ann. of Math., 52 (1950), 309-321.
- 4. A. Lazar, Affine functions on simplexes and extreme operators, Israel J. Math., 5 (1967), 31-43.
- 5. E. Makai, The space of bounded maps into a Banach space, Publi. Math. Debrecen, 19 (1972), 177-179.
- 66. K. Sundaresan, Spaces of continuous functions into a Banach space, Studia Math., 48 (1973), 15-22.

Received August 22, 1974. The author would like to express his gratitude to Professor R. Phelps whose valuable suggestions lead to the final form of this paper.

UNIVERSITY OF PITTSBURGH

Vol. 60, No. 1 CONTENTS

D. E. Bennett, Strongly unicoherent continua	1
Walter R. Bloom, Sets of p-spectral synthesis	. 7
R. T. Bumby and D. E. Dobbs, Amitsur cohomology of quadrati	
extensions: Formulas and number-theoretic examples	21
W. W. Comfort, Compactness-like properties for generalized wear	
topological sums	31
D. R. Dunninger and J. Locker, Monotone operators and nonlinea biharmonic boundary value problems	ır 39
T. S. Erickson, W. S. Martindale, 3rd and J. M. Osborn, <i>Prim</i>	
nonassociative algebras	
· ·	
P. Fischer, On the inequality $\sum_{i=1}^{n} p_i \frac{f(p_i)}{f(q_i)} \ge 1$	65
G. Fox and P. Morales, Compact subsets of a Tychonoff set	
R. Gilmer and J. F. Hoffmann, A characterization of Prüfer domain	
in terms of polynomials	. 81
L. C. Glaser, On tame Cantor sets in spheres having the same	
projection in each direction	87
Z. Goseki, On semigroups in which $X = XYX = XZX$ if and only if	
X = XYZX E. Grosswald, Rational valued series of exponentials and diviso	
functions	
D. Handelman, Strongly semiprime rings	
J. N. Henry and D. C. Taylor, The $\bar{\beta}$ topology for w*-algebras	
M. J. Hodel, Enumeration of weighted p-line arrays	
S. K. Jain and S. Singh, Rings with quasiprojective left ideals	
S. Jeyaratnam, The diophantine equation $Y(Y+m)(Y+2m)\times$	
(Y+3m) = 2X(X+m)(X+2m)(X+3m)	183
R. Kane, On loop spaces without p torsion	
Alvin J. Kay, Nonlinear integral equations and product integrals	
A. S. Kechris, Countable ordinals and the analytic hierarchy, I	.223
Ka-Sing Lau, A representation theorem for isometries of $C(X, E)$. 229
I. Madsen, On the action of the Dyer-Lashof algebra in $H_*(G)$	
R. C. Metzler, Positive linear functions, integration, and Choquet's	
theorem	
A. Nobile, Some properties of the Nash blowing-up	
G. E. Petersen and G. V. Welland, Plessner's theorem for Riesz	
conjugates	. 307

Pacific Journal of Mathematics

Vol. 60, No. 1 September, 1975

Donald Earl Bennett, Strongly unicoherent continua	1
Walter Russell Bloom, Sets of p-spectral synthesis	7
Richard Thomas Bumby and David Earl Dobbs, Amitsur cohomology of	
quadratic extensions: formulas and number-theoretic examples	21
W. Wistar (William) Comfort, Compactness-like properties for generalized	
weak topological sums	31
Dennis Robert Dunninger and John Stewart Locker, <i>Monotone operators</i>	
and nonlinear biharmonic boundary value problems	39
Theodore Erickson, Wallace Smith Martindale, III and J. Marshall Osborn,	
Prime nonassociative algebras	49
Pál Fischer, On the inequality $\sum_{i=0}^{n} [f(p_i)/f(q_i)]p_i \ge i$	65
Geoffrey Fox and Pedro Morales, <i>Compact subsets of a Tychonoff set</i>	75
Robert William Gilmer, Jr. and Joseph F. Hoffmann, A characterization of	
Prüfer domains in terms of polynomials	81
Leslie C. Glaser, On tame Cantor sets in spheres having the same projection in each direction	87
Zensiro Goseki, On semigroups in which $x = xyx = xzx$ if and only if	
x = xyzx	103
Emil Grosswald, Rational valued series of exponentials and divisor	
functions	111
David E. Handelman, <i>Strongly semiprime rings</i>	115
Jackson Neal Henry and Donald Curtis Taylor, The $\bar{\beta}$ topology for	
W*-algebras	123
Margaret Jones Hodel, <i>Enumeration of weighted p-line arrays</i>	141
Surender Kumar Jain and Surjeet Singh, Rings with quasi-projective left	
ideals	169
S. Jeyaratnam, <i>The Diophantine equation</i>	
Y(Y+m)(Y+2m)(Y+3m) = 2X(X+m)(X+2m)(X+3m)	183
Richard Michael Kane, On loop spaces without p torsion	189
Alvin John Kay, Nonlinear integral equations and product integrals	203
Alexander S. Kechris, <i>Countable ordinals and the analytical hierarchy</i> .	
<i>I</i>	223
Ka-Sing Lau, A representation theorem for isometries of $C(X, E)$	229
Ib Henning Madsen, On the action of the Dyer-Lashof algebra in $H_*(G)$	235
Richard C. Metzler, Positive linear functions, integration, and Choquet's	
theorem	277
Augusto Nobile, Some properties of the Nash blowing-up.	297
Gerald E. Peterson and Grant Welland, <i>Plessner's theorem</i> for Riesz	
conjugates	307