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GENERALIZED RIGHT ALTERNATIVE RINGS

IRVIN R O Y HENTZEL

We show that weakening the hypotheses of right alternative
rings to the three identities

(1) (ab,c,d) + (a,b,[c,d]) = a(b,c,d) + (a,c,d)b
(2) (α,α,α) = 0
(3) ([a,b],b,b) = O

for all α, b, c, d in the ring will not lead to any new simple
rings. In fact, the ideal generated by each associator of the
form (a, b, b) is a nilpotent ideal of index at most three. Our
proofs require characteristic ^ 2 , ̂ 3 .

Introduction. We shall call a ring a GRA ring (for generalized
right alternative ring) if it satisfies the following three identities:

(1) o = A (a,b,c,d) = (ab,c,d) + (α,6,[c,d ]) - a(b,c,d) - (a,c,d) b

(2) 0^(α,α,α)

(3) 0^([b,ala,a).

On all rings that we study in this paper, we assume that for n = 2 or
n = 3, the map x-*nx is one-to-one and onto. This is equivalent to
weakly characteristic ^ 2 , ^ 3 (see [1]). All three conditions are
consequences of the right alternative law (α, x, x) = 0 and characteristic
^2, and thus GRA rings are generalizations of right alternative
rings. Similar conditions have been studied by E. Kleinfeld, H. F.
Smith, I. R. Hentzel, and G. M. Piacentini, usually through an idempo-
tent decomposition. The results given here generalize much of their
work, mainly by dispensing with the assumption of an idempotent. Our
work shows the relationship of these rings to right alternative rings; this is
a simpler and more direct approach than that which has been done
before.

When we are dealing with a GRA ring R, we shall let / be the
additive subgroup generated by all associators of the form (a,b,b) for all
a,b ER. I is a measure of how far R is from being a right alternative
ring. We show that / is an ideal of R, that / is commutative, and that /
is the sum of ideals of R whose cube is zero. This means that if R is
simple, or even nil-semi-simple, then R is right alternative. Since all the
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hypotheses on R are consequences of the right alternative law, showing
that R is right alternative is as strong a result as one could hope for.

The three hypotheses chosen are individually expressive of well-
known ring structure. Given (1), then (2) holds <=> the ring is power-
associative. Given (1) and (2), then (3) holds t=> the ring under the
symmetric product a°b = ab + ba is a Jordan ring.

Basic identities and definitions. An ideal I of R is called
trivial if Ij£ 0 and I2 — 0. A ring R is called semi-prime if R has no
trivial ideals, i? is called simple if R2^ 0 and R has no ideals except 0
and R itself. The associator (a,b,c) is defined by (α,6,c) =
(ab)c - a (be). The commutator [a,b] is defined by [a,b] = ab - ba.

To simplify the notation, dot and juxtaposition will be used to
indicate multiplication. When both appear, juxtaposition indicates that
product is taken first. Thus ab c = (ab)c.

In expressions where elements are supposed to appear, we often
place a set of elements. This means we are considering the additive
group spanned by all the elements generated as the arguments of the
expression vary through the indicated sets. Thus (R,x,x) means the
additive subgroup generated by {(r,x,jc)|r E R}.

The following identities are used:

(4) 0 - B(a, b) = (a, b, b) + (b, a, b) + (b, b, a).

(5) 0 - C(a, b, c) = [a, (ft, c, c)] + [c, (6, α, c)] + [c, (6, c,a)].

(6) 0 s D(a, b,c, d) = (α, b, cd)~ (a, bd, c)- (α, b, d)c + (α, d,

(7) 0 - £(α, ft, c, d) = (ab, c,d)- (a, be, d) + (α, fe, erf)

Proof. Property (4) is a linearization of property (2). To show (5),
it will suffice to show 0 = [a,(b,a,a)]. This follows since 0 =
([b,a],a,a) + A(a,b,a,a)- A(b,a,a,a)= - [α,(fc,α,α)]. Property (7) is
the Teichmϋller equality which holds in any non-associative
ring. Property (6) follows since A(α,fo,rf,c) + D(a,b,c,d) = E(a,b,d,c).

Main section. For comparison with other papers discussed in
the final section of this paper, we will need a form of Lemma 1 and
Lemma 2 that does not require (3).

LEMMA 1. Let R be a nonassociative ring satisfying (1) and
(2). Then 0 = [α,(M,α)] + 4(M,α)α -2(Z>,α,α2).
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Proof.

0 = A (α,α,α,b) + A (a,a,b,a)- A (b,α,α,α) 4- D(a,b,a,a)

,a,a)+ a B(b,a) + 2B(b,a)- a +B(ba,a)

The expression in braces is zero by the linearized form of (4); the
remainder is the conclusion of the lemma.

LEMMA 2. Let R be a nonassociative ring satisfying (1) and
(2). Then

12(b,x9x)a = -

- [α, (fc,x,x)] - x, (b,a,x)] - [x,

Proof. Linearize Lemma 1 to obtain

0 =

(8) - [α,(6,jc,x)] - [x,(6,α,jc)] - [x,(6,x,α

-4(Z>,x,x)α -4(f>,α,x)x -4(6,x,α)x.

The proof follows since

,αx) -f 5(b,ax,x) + (b,

- [x,(b,a,x)] - [x,(ft,jc,α)] -

The remainder of this section will deal with GRA rings.

LEMMA 3. If R is a GRA ring, then for each fixed b E R, Pb = the
additive subgroup spanned by {(fc,x,x)| x E R} is a right ideal of R.

The proof is immediate from Lemma 2 and 0 = C(a,b,x).
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LEMMA 4. If R is a GRA ring, then

(α,x,x)(fc,y,y) 4- (α,y,y )(£,*,*) = 0

for all a,b,x,y E R.

Proof. We call a map D:R->R a derivation if (ab)D =
α (ί>D) 4- (αD )ί>. From (1) it is clear that aDx = (a,x,x) is a derivation on
R. From Lemma 3, aDxy = ((α,x,x),y,y) is also a derivation on J? since
((α,x,x),y,y) = ((α,x,x)y)y - (α,x,x)y2E Pα. This means

In contrast to this, if we expand differently,

(ab)Dx,y = ((ab)Dx)Dy = ((αDx)6 + a(bDx))Dy = (aDxDy)b

+ ( α A ) (6Dy) 4- (α£>y) (feDx) -f a (bDxDy) = (aD^y )b + (aDx )bDy)

+ (aDy)(bDx)+a(bDx,y).

Comparing this with the previous sentence gives (αDx)(6Dy)4-
(aDy)(bDx) = 0; this is the identity of Lemma 4.

LEMMA 5. IfR is a GRA ring, then (α,jc,x )(fc,y,y) 4- (fc,x,jt)(α,y,y) =
0.

Proof. (a,x,x)(a,y,y)= - (a,*,x){(y,α,y) + (y,y,a)} by (4) =
{(α,α,y) + (α,y,α)}(y,x,x) by Lemma 4 = -(y,a,a)(y,x,x) by (4). We
have established (α,jc,x)(α,y,y)= - (y,α,α)(y,x,jc). Iterating this three
times gives (α,x,x)(α,y,y) = - (y,α,α)(y,x,x) = (x,y,y )(x,α,α ) =
- (α,x,x)(α,y,y). Thus (α,x,x)(α,y,y) = 0. We then linearize this in the
element a to get the identity of Lemma 5.

THEOREM 1. Let R be a GRA ring. The following properties hold
forR.

(a) / is an ideal of R.
(b) Every element of I is a sum of elements of U αG/?Pα
(c) [I,J] = 0.
(d) (Pa)

2 = 0 for all a <Ξ R.
(e) [I\R] = 0.

Proof. Property (b) is clear. Since Pa is a right ideal for each
a E R, I is also a right ideal; equation (1) then shows that / is a two-ideal
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of R. This shows (a). We now show (c): (a,y,y)(b,x,x) =
- (a,x,x)(b,y,y) from Lemma 4 I - (b,x,x)(a,y,y) from Lemma
5. Lemma 5 also shows (d). We now show (e): from (2) we have
[a2,a] = 0; linearizing this gives [a2,b] + [ab + ba,a] = 0. Now, if i and/
are elements of I, and b is an element of R, [ij + ji,b] + [ib + Wj] +
[/& + &/,/] = 0. From parts (a) and (c) we have 2[ί/,6] = 0; therefore
[J2,l?] = 0.

Theorem 1 shows that I is commutative. It follows that for each
a E JR, Pα is an ideal of the subring /. It also follows that / is
nil. Actually, we have shown / is a Baer-lower-radical ring. We will
go on and show a much stronger condition on nilpotence, but we will
state the above result as a theorem now.

THEOREM 2. (a) If R is a simple GRA ring, then R is right
alternative.

(b) //JR is a nil-semi-simple GRA ring, then R is right alternative.

LEMMA 6. Let R be a GRA ring. Then

(a) (a,(b,c,c),d) = (a,c,c)d b - (a,c,c)b d.

(b)
(c)
Proof of (a). By (1) and Lemma 3, the map xD = (x,c,c)d is a

derivation. Thus (ab)D = (aD)b + a(bD). As in Lemma 4, Dc is also
a derivation; so (ab)Dc = (aDc)b + a(bDc). Combining these two ex-
pressions gives

(ab, c, c)d = (a, c, c)d b + a -(b,c, c)d = (a, c, c)b d + a(b,c,c) d.

Therefore (a,(b,c,c),d) = (a,c,c)d-b -{a,c,c)b-d.
The statement (b) follows from (a). We now prove (c). Let

del. Then (a,(b,c,c),d) = (a,c,c)d b - (a,c,c)b d by (a) =
(d,(a,c,c),b) by parts (a) and (c) of Theorem 1 = - (d,(b,c,c),a) by part
(b) of this proof. Now, continuing, 0 = (a,(b,c,c),d) + (d,(b,c,c),a)=z

a{b,c,c)-d - a-(b,c,c)d + d (b,c,c)-a - d\b,c,c)a = d [a,(b,c,c)] by
parts (a), (c), and (e) of Theorem 1.

Since d G /, we have shown that /[JR,/] = O. By part (c) of
Theorem 1, we have [JR, /] / = 0 as well. This finishes the proof of
Lemma 6.

LEMMA 7. Let R be a GRA ring. Then,

(a) K = {([/?, I],x,x)I x E R] is an ideal and IK = KI = 0.
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(b) A(I) = {a E /1 (a,x,x)+al + IaQK for all x E R} is an
ideal, LA (I) + A (/)•/ C K, and [R, I]CA (/).

Proof of (a). K is understood to be the subgroup spanned by the
indicated elements. K is a right ideal of R from Lemma 3. From (1)
and Lemma 6.c, b([#, /],*,*) C ([&,[£, I]],x,x) + ([JR, I],x,x) f> C
K Thus 1C is a left ideal of i?. By (1) and Theorem l.c, if i E I9

([r,ί],jc,jc) = [r,(U*)] Thus IK + KICI [jR, /] + [/?,/]/ = 0 by
Lemma 6.c.

Proo/ o/ (b). First notice that A (I) is an ideal. This requires (1),
part (a), Lemma 6.c, and Theorem l.c. Clearly, / A(J) + A ( / ) 7 C
K. Lemma 6.c says [JR, /] C Λ (/).

THEOREM 3. Let {{a,b,b)) be the ideal of R generated by the single
associator (a,b,b). Then ((a,b,b))3 = 0.

Proof By Lemma 3 and Lemma 7, ((a,b,b))CPa + A(/). Using
Theorem l.d, ((a,b,b))2 C PαPα + / A(/) + A(/) / + A(/)A(/)C K
Therefore, <(α,6,6)>3 CJX + XJ = 0.

COROLLARY. // i? /s a semi-prime GRA ring, then R is right
alternative.

Proof From Lemma 7.a, X2 = 0 φ l C = 0. From the proof of
Theorem 3, ((α,fe,fc))2 CK = 0; thus <(α,6,6)> = 0. Since {aXb) = 0 for
all α,fe E JR, 1? is right alternative.

Example of a GRA ring. If A is an associative and commuta-
tive ring with an element 1/2, and M is any module over A, then
S = A x M can be made into a GRA ring by the following definition of
addition and multiplication. Addition is coordinatewise. Multiplica-
tion is given by (a,m)(a\m') = (aa\l/2am'+ 112a1 m). If we identify M
with {0} x M, then M is a two-sided ideal of S, and [S,M] = 0. If
1/2 + 1/2 = e (e is the identity of A), then e is an idempotent of S, and
- 4(m,e,e) = m for all m ELM. The ring S gives us a counterexample to
various questions we might raise. For example:

1. There exist GRA rings which are not right alternative.
2. In a GRA ring JR, / need not be in the nucleus.
3. In a GRA ring R, ((/?,X,JC),X,X) need not be zero.
4. Based on the example S, one might attempt to show that in any

GRA ring R, [JR, /] = 0. This we have not been able to show, but we
have shown that for any element b E R, (((R,b,b),b,b)) is an ideal of R
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which commutes elementwise with JR. This corresponds closely to M
since M = (((S,e,e),e,e)).

Related work. Hypotheses similar to (1), (2), and (3) have been
studied. In [6] and [3], the three identities listed below were assumed.

(a) (ab,c,d) + (α,6,[c,d]) = a (6,c,d) + (a,c,d) b.
(b) {a,b,cd) + ([α,Hc,d) = c(a,b,d) + (a,b,c) d.
(c) (α,α,α) = 0.

In [4], the condition (b) was replaced by flexibility;
(b') (α,M) = 0 for all a,b E R.

LEMMA 8. (Kleinfeld). If R is a ring satisfying (α), (b), and (c), or
(α), (&'), and (c), then R is a GRA ring.

Proof We must show ([b,a],a,a) = 0 for all a,bER. From (a)
and (c) we have ([b,a],a,a) - - [a,(b,a,a)]. The proof of Lemma (1)
required only (a) and (c). Therefore,

0 = [α,(/>,α,α)] + 4(b,a,a)a -2(6,α,α2)

If (b) holds, the expression in braces is 0, and hence ([b,a],a,a) = 0. If
(b') holds, using (a) and (b'), we get (b,a,a2)- ([b,ά],a,a)- a(b,a,a)-
(b,a,a)a =0. As above, we get

0= -([b7a],a,a)-2{(b,a,a2)-([b,a),a,a)-a(b,a,a)-(b,a,a)a}.

Therefore, (a), (b')> and (c) imply (3).

THEOREM 4. If R is a semi-prime ring satisfying (a), (b), and (c),
or (a), (bf), and (c), then R is alternative.

Proof By the corollary to Theorem 3, R is right alternative. If
(b') holds, then R is alternative. If (b) holds, by the mirror form of the
corollary to Theorem 3, R is left alternative. Thus R is alternative in
this case as well.

Theorem 4 is an impressive generalization of [3], [4], [5], and [6].

I. R. Hentzel and G. M. Piacentini have studied rings satisfying only
conditions (1) and (2). They have shown that when such rings are simple
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and possess an idempotent, then they must be right alternative. In view
of this result, it seems that perhaps equation (3) is not necessary. This
seems even more plausible since only equations (1) and (2) imply the
result

The proof of Lemma 3 requires that ([a,x],x,x) = 0 for all a,x in the
ring. Without this, Dab is not a derivation. The fact that Dab was a
derivation was the basis of all our results.
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