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This paper is about the bounded linear operators T acting
in a separable Hubert space /C such that T*Γ and T+ T*
commute. It will be shown that such operators are normal if
they are either compact or quasinilpotent. It is conjectured
that if Γ*Γ and T + T* commute, then T = A + Q where A =
A*, AQ = QA, and Q is quasinormal. This conjecture is shown
to be equivalent to [T*T—TT*IT[T*T—TT*] being hermitian.

For bounded linear operators X, Y, let [X, F] = XY - Γ X Let
0 = {T: [T*T, Γ + T*] = 0}. The defining condition for θ appears in
the work of Embry She has shown that if σ(T*) f)σ(T) = 0 and
JΓ or T* are in 0, then T is normal [9, p. 236]. She has also shown
that if Teθ and [T*T, TT*] = 0, then T is quasinormal [8, p. 459].
On the other hand if Q is quasinormal, A = A*, and [A, Q] = 0,
then A + Qeθ. Thus Embry's result shows that the intersection of
the class (BN) = {T: [T*T, TT*] = 0} (see [4] and [5]) and θ is trivial,
i.e., the quasinormals. In particular, there are no nonquasinormal
centered [11] operators in θ. These last observations are helpful
when trying to construct examples of nonquasinormal operators in θ
since (BN) includes all weighted shifts and most weighted translation
operators. Using [13] it is also easy to see that if T2 is normal and
Teθ, then T is normal.

It seems reasonable to make the following conjecture:

(C) θ = {A + Q: [Q, Q*Q] - 0, [Q, A] = 0, A* = A} .

If (C) is true, then using the canonical form for quasinormals given in
[1], it is easy to see that every operator in θ is subnormal. While
we have not been able to resolve (C) we shall present several results
which show that the operators in θ behave much as if they were
hyponormal. In particular, we shall show that if Teθ is compact
or quasinilpotent, then it is normal. This will strengthen the result
in [6] Which asserts that if Teθ and T is trace class, then T is
normal.

Finally, let B(X) = (λ - Γ*)(λ - T) = λ2 - λ(T* + T) + Γ*Γ.
Note that if Teθ, then the values of JS(λ) form a commutative
family of normal operators.

2. Main results. Recall from [6] that if Teθ, then XΛ- Teθ
for real λ. Also if Teθ, then the null space of T, N(T), is reducing.
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Finally, Teθ if and only if T*[T*9 T] == [T*, T]T.

THEOREM 1. Suppose that Teθ and X is an eigenvalue of T.
Then the eigenspace of T associated with X is reducing.

Proof. Suppose that Teθ and λ is an eigenvalue. If λ is real,
we are done. Suppose that X is not real. Since N(T) is reducing
we may also assume that T is one-to-one. Let φ be such that TΦ =
Xφ. Then [Γ*, T]φ = (λ - T)T*φ. Thus Γ*[Γ*, T]φ = [T*f T]Tφ be-
comes B(X)T*φ = 0. Since B(X) is normal, and JB(λ)* = jB(λ), we
have B(X)T*φ = 0. Thus

0 == XB(x)T*φ = B(X)T*Tφ = T*TB(X)φ ,

so that B(X)φ = 0. But then

0 = B(X)φ = (λ - T*)(λ - D0 = (λ - λ)(λ - T*)ί5 .

Hence T*φ = λ^ and the eigenspace is reducing.

That the eigenspaces of a hyponormal operator are reducing is
well known. See, for example, [12, p. 420].

THEOREM 2. If Teθ and T is quasinilpotent, then T= 0.

Proof. Suppose that Teθ and σ(T) = {0}. We may assume that
T is one-to-one if T is not zero. If Γ*Γ(Γ+ T*) = 0, we are done.
Suppose then that Γ*Γ(Γ + T*) Φ 0. Since <J(Γ) = {0}, B(X) is inver-
tible for all X Φ 0. Let i?( ) be the spectral measure associated with
the commutative Banach *-algebra generated by T*Γ and T+ T*.
Then there exist E measurable functions g, h such that

, Γ* + Γ=

and J is a compact subset of the plane. (In fact J £ < J ( Γ * Γ ) X

o-(Γ* + T).) Since (Γ*Γ)(T r+ Γ*) ̂  0, there exists s oeJ, β0 in the
support of E, such that g(s0), h(s0) are in the jK-essential ranges of
g, h, respectively, and both g(so)9 h(s0) are nonzero. The polynomial
λ2 + h{so)X + g(s0) has at least one nonzero root. Call it λ0. Then

B(X0) = ^(xl + h(s)X0

is not invertible which is a contradiction. Hence T = 0.

As an immediate consequence of Theorems 1 and 2 we get:
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COROLLARY 1. If Teθ and T is compact, then T is normal.

Our next result has two interesting corollaries.

THEOREM 3. Suppose that N is normal, Beθ, and [N, B] = 0.
Then N + B e θ if and only if, relative to the same orthogonal
decomposition of the underlying Hilbert space, N = iVx 0 JV2, B =
Bx 0 B2, Nx = N? and B2 is normal.

Proof. The only if part is clear. Suppose then that T = N +
Beθ where Nis normal, [N,B] = 0, and Beθ. Note that [N, £*] = 0
by Fuglede's theorem. Then [T*, T] = [B*,B], so that T*[T*, Γ] =
[Γ*, Γ]Γ becomes (N* - N)[B*f B] = 0. Let P be the orthogonal
projection onto the null space of iV* — N. Then PN = NP and PB —
BP since P is a measurable function of N. Thus the range of P
reduces both N and B, so that iSΓ = Nx@ N2, B = Bλ® B2 relative
to R(P) 0 B(I - P). But Nf = N, by definition of P and B2 is normal
since P[£*, 5] - [B*, B].

COROLLARY 2. If Teθ, X + Teθ, and λ is wo£ reαϊ, then T is
normal.

COROLLARY 3. If Teθ and T is completely nonnormal, then
there does not exist any nonhermitian normal operator N such that
[T,N] - 0 and T+ Neθ.

3. Block matrix representation* If Conjecture (C) is true, then
if Teθ and T is completely nonnormal, T must have a lower trian-
gular block matrix representation with all zero entries except on the
diagonal and first subdiagonal. All diagonal entries are the same
self-adjoint operator A, and all subdiagonal entries are the same
positive operator P. This decomposition follows easily from the work
of Brown on quasinormal operators [1].

It is easy to compute what subspace the first block corresponds
to. It is the closure of the range of T*T— TΓ*. Morrel has deve-
loped a decomposition for operators T which have a subspace of
N[T*T- Γϊ7*] invariant [10]. Applying this to Teθ yields a lower
triangular block representation for T provided that T*T — TT* is
not one-to-one. If this approach is to verify Conjecture (C) then it
will be necessary and sufficient to show that [ Γ * Γ - TT*]T[T*T-
ΓT*] is hermitian.

THEOREM 4. Suppose that Teθ is completely nonnormal. If
[ϊ7*, T]T[T*t T] is hermitian, then T= A + Q where [A, Q] = 0, A =
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A*, [Q, Q*Q] - 0.

Proof. Suppose that Teθ is completely nonnormal and [T*,
T]T[T*9 T] is hermitian. If [T7*, Γ] is one-to-one we have T = T*
and are done. Assume then that j[Γ*, T] is not one-to-one. Since
T is nonnormal we have [T*f T] Φ 0. Thus from [10] we get that

( 1 )

on x, = Σ U θ fl*,
assumption A1 = Af.
Using the fact that Ho = jβ([Γ
from (1) that
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0

= R([T*
But then

0
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2

0

0
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, T]), I ̂
[T*,

dim Hi ^ dim Hi+ί. By
Bi so that Bλ is one-to-one.

T]) one gets by direct computation

( 2 ) B*Ai+1 = Af+1Ai+ Bf+1Bί+1 - Ai+1Af

for i = 1, 2, where Az+1 = J?z+1 = 0 if I < oo. Furthermore, by
definition of the if* we have Bt has dense range so that Bf is one-
to-one. Now since T*[T*, T] = [I7*, Γ]Γ we have that A.BfB,^
BΐBίAi, or .BfAg^! = B?A*BX Since J5i is one-to-one with dense range
we get that A2 = A2*. But then from (2), we see that BfB2 = BxBf
and B2 is one-to-one. Thus from BζA3 — A2Bf we get that B%ASB2 =
A 2 £*£ 2 - Λ B A * = BiΛBf = B,BfA2. Hence A3 = At and [A2,
52*J?2] = 0. Suppose now that A, = A*, [Ao J5*JS,] = 0, B*+1Bi+1 = B,Bff

and Bi is one-to-one with dense range for i ^ k. Then β f c + 1 is one-
to-one with dense range. Also B*Ak+1Bk = AkB*Bk and hence A*+1 =
iljb+i Thus Bk+2Bk+2 = Bk+1Bk+1 so that Bk+2 is one-to-one with dense
range. But then Ak+1Bk+ιBk+1=Ak+1BkB* = BkAkBk — BkBkAk+1. Hence
[-Afc+i, Bk+1Bk+1] = 0.

If I < oo, then the ith equation is Af+1Aί+1 = BiB* + Aι+1A*+1.
As before we get A*+1 = Aι+1 and hence Bx — 0. But then Bt — 0
for all i which is a contradiction of the nonnormality of T. Thus
ί = oo. Now let

A =

Then JS*A = AB* from (2). But A = A* so that [5, A] = 0. Hence
5 = T - Ae θ. However B*[B*, B] = 0 so that £*(£*£) - (B*B)B*
and i? is quasinormal as desired.
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3* Comments, The conclusion of Theorem 1, that eigenspaces
are reducing, appears in the work of Berberian. Using Theorem 1,
it follows immediately from [3, p. 276] that if Te θ, σ(T) is countable,
and T is reduction-isoloid [3, p. 277], then T is normal.

In studying nonnormal operators one usually picks off a normal
summand and studies the completely nonnormal operator that is left.
Theorem 1 tells us that any condition which provides for eigenvalues
is incompatible with the complete nonnormality of a Teθ. Thus one
can prove results such as [2, p. 190], [3, p. 277].

THEOREM 5. If Teθ is completely nonnormal and T is also (Gx)
or restriction convexoid, then σ(T) has no isolated points.

Finally, we note that the restriction of a Teθ to an invariant
subspace is not necessarily in θ. The quasinormal operator in [7]
whose restriction to an invariant subspace is not quasinormal is an
example.
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