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If S is a compact subset of R? it is shown that S is
starshaped if and only if S is nonseparating and the inter-
section of the stars of the (d-2)-extreme points of S is non-
empty.

Let Sc R% The (d-2)-¢extreme points of S are by definition those
points of S such that if DS is a (d-1)-dimensional simplex then
x ¢ relint D (the relative interior of D). The totality of (d-2)-extreme
points of S is denoted by E(S). For each ye S we define S(y), the
star of ¥y by S) = {#: [y, 2] = S}, where [y, 2] denotes the closed line
segment from y toz. S is said to be starshaped if Ker S = @& where
Ker S = {S(¥):y€S}. In [2] it is shown that if S is a compact
starshaped set in B? then Ker S = N {S(¥): v € E(S)}. Thus the follow-
ing question arises: if S is such that ) {S(¥): v € E(S)} # &, under
what hypothesis is S starshaped? It is clearly desirable that the
hypothesis should be as weak as possible in order to indicate to what
extent M {S®): y€ E(S)} = @ implies that S is starshaped. In [3] it
is shown that one suitable hypothesis is that S should have the half-
ray property, that is, for any point z in R4S there is a half-line [
with vertex « such that [N S = @. Now we note that this hypothesis
is a rather strong one especially as it is being used to deduce the
fact that a certain set is starshaped. Thus one suspects that a much
weaker hypothesis might suffice. This suspicion is further strengthened
by the example given in [3] to show that, in fact, some hypothesis
is necessary. More precisely, the example given is a separating set
that is, its complement is not connected. The purpose of this note
is to prove the following

THEOREM. If SC R® is a mnonseparating compact set and
N {Sw): ye E(S)} # @, then S is starshaped.

Proof. Let ze N {S(y): y< E(S)}. We shall show that for any
z in RAS, l(x,2) N S = @ where l(z, ) is the half-line with vertex z
which does not contain 2z but is such that the line containing I(x, 2)
does contain z. Clearly this suffices to show that S is starshaped.

Choose %, in the complement of the convex hull of S, then
Iz, 2) N S = @. Now since S is a nonseparating compact set, its
complement is a path-connected unbounded open set (see [, p. 356]).
Thus any point in RAS can be “joined” to x, by a finite polygonal
path in R%s such that if ¢ is any segment of the path then the line
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containing ¢t does not contain z.

Now we assume I(x,2) NS # @ for some point z in R4S and
seek a contradiction. Let P be a polygonal path as described
above with consecutive vertices v, =, Vs, ¥s, +++, ¥, = %. Put 7=
max {7:l(v;, 2) N S= @} then 1 <7< n. Let the closed segment
[v:, vis] be the image under the continuous function f of the unit
interval, with f(0) = v, and f(1) = v,,,. Note that if p s ¢ then
W), 2)Nlflg),2) = @. Now I(f(1),2) N S = @ and so, since S is
compact we can put » = max {9: I(f (@), 2) N S+ @} and then 0 < p < 1.
Let v be the point of S on I(f(p), z) which is furthest from z. Now
suppose D is a (d — 1)-simplex with Dc S and y ¢ relint D.

Then y must be the mid-point of a segment which is contained
in SN Q@ where Q is the plane through z, v, v,.,. But this is im-
possible because of the definition of ¥ and the fact that I(f(g), ) N
S= @ for p<q=<1. Hence ye E(S) and so f(p)eS. This contra-
diction shows that I(x, 2) N S = @ and thus completes the proof.

Finally, as a result of the above theorem and the comments made
in [2] we are led to ask: if S has the half-ray property and has a
point which “sees” just the extreme points of the convex hull of S and
not all the (d-2)-extreme points, is S necessarily starshaped? The
following example shows that the answer is negative:

S={@wer:jel =1yl = Y@ e R ol <Ly > 1]

Similarly we observe that if we rotate S about the y-axis we obtain
a three dimensional set with the required properties.
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