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ON POWER-INVARIANCE

ELOISE HAMANN

Let R be a commutative ring with identity, and consider
the power series ring R[[X]] in one analytic indeterminate over
R. 1Is the coefficient ring R unique in the sence that if R[[X]]
is isomorphic to S[[Y]] with Y an analytic indeterminate over
S, need S be isomorphic to R? Whenever this is the case, B
will be called power-invariant. It will be shown that if B
is a quasi-local or a complete semi-local ring then R is power-
invariant.

The answer to the general question was not known by the author
until the Commutative Algebra Conference in June of 1974 at the
University of Nebraska where a counterexample was produced by
Andy Magid. He has graciously requested that it be reproduced in
this paper. The fact that rings with nilpotent Jacobson radical are
power-invariant is known [6]. The paper will also show that if
R[[X]] = S[[Y]], under the assumption that certain elements are not
zero-divisors that there exist one-to-one maps from R into S and S
into B. In particular, this is the case if R is a domain. Finally,
the paper generalizes the power-invariant results to an arbitrary
number of variables.

The following notational conventions will be observed and referred
to throughout the paper. J(R) will denote the Jacobson radical of
aring R. W,R,S, X, 7Y, j, u, v will be such that W=R[[X]|]=S[[Y]]
where X and Y are analytic indeterminates over R and S respec-
tively; Y= 7 + uX, and X =k + vY where Je J(R), ue W, ke J(S),
and ve W.

Note that since W is complete with respect to both (X) and (Y),
W is also complete with respect to (X, Y) and thus also complete
with respect to the ideals jW and kW contained in (X, Y). (If {w,}
is a Cauchy sequence in the (X, Y)-adic topology, it can be written
as a sum of two Cauchy sequences {s,} and {t,} which are also Cauchy
with respect to the (X)-adic and (Y)-adic topologies respectively.
Let s be the limit of {s,} in the (X)-adic topology and ¢ the limit of
{t.} in the (Y)-adic topology. Since s and ¢ are then limit points
of {s,} and {¢,} respectively in the (X, Y)-adic topology, s+ ¢ is a
limit point of {w,}. Conceivably the (X, Y)-adic topology may not
be Hausdorff, so that limits aren’t necessarily unique.) Further, R
is certainly a closed subset of W in the jW-adic topology so R is
complete with respect to (j), the ideal of R generated by j, but
perhaps not Hausdorff. Similarly, S is complete but perhaps not
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Hausdorff with respect to (k), the ideal of S generated by (k).

1. Andy Magid’s counterexample. The example is the com-
pletion with respect to a certain ideal of Melvin Hochster’s counter-
example to the question whether R[X] isomorphic to S[Y] implies S
is isomorphic to R, where X and Y are ordinary indeterminates over
R and S respectively. Specifically, there exists a Noetherian ring R
with zero Jacobson radical which has a finitely generated nonfree
module P such that P@ R = R:. Taking symmetric algebras of both
sides yields A[T] isomorphic to R[X, Y, Z] where T, {X, Y, Z} are
indeterminates over A and R respectively and A is the symmetric
algebra of P, and is not isomorphic to R[X, Y]. See either [3] or
[4] for more details. If M is a B-module, let S,(M) denote the
complete symmetric algebra of M over B, i.e., the completion of the
symmetric algebra S;(M) with respect to the ideal generated by M.
To get the counterexample for the power series case, take the com-
plete symmetric algebras of P@ R and R®over E. Then S (PP R) =
S.PIITIl and SR = R[[X, Y, Z]] with T an analytic indeter-
minate over .§R(P) and X, Y, Z independent analytic indeterminates
over R. It remains to show that S =(P) is not isomorphic to R[[X, Y]].
It suffices to show that §R(P) = R[[X, Y]] implies Sp(P) = R[X, Y].
Let M be any finitely generated R-module. J(Sx(M)) is the ideal
generated by M since MS(M) is certainly contained in J(§R(M)) and
§(M)/M§(M ) = R whose Jacobson radical is zero. Thus, the associated
graded ring of S(M) with respect to J(S(M)) is S(M)/MS(M) D
MS(M)/\MS(M)]* & --- which is isomorphic to S(M). Thus, S(M)
determines S(M) and the result follows.

2. Some power-invariant rings. The following theorem from
[8] and [9] will be needed for the results of this section.

THEOREM 1. Let B = Y2,a,X*e R[[X]], and suppose that ¢ 1is
an R-endomorphism of R[[X]] such that ¢(X) = B. Then:

(a) ¢ is onto if and only if a, its a unit of R.

(b) If ¢ is onto, then ¢ is one to one.

(¢) ¢ is an automorphism if and only if a, is a unit of R.

THEOREM 2. Let B= >:2,0X' e R[[X]]l. If Nr(®}) =0 in
R (or N;-,(B®) =0 in R[[X]]) and R is complete with respect to
(b)) (or R[[X]] is complete with respect to (B)) then ¢ which maps
S a. Xt to Sy, a,B is an R-endomorphism.

THEOREM 3. Let B = S,b.X'c R[[X]]. Let A be an ideal of
R. If bA = A, then AZ N, (BY).
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Also recall that an element of R[[X]] is invertible if its constant
term is invertible [7].

We are ready for our first result.

THEOREM 4. If R is quasi-local, R is power-invariant.

Proof. Let the notation be as in the next-to-last paragraph of
the introduction. If w is an invertible element of W, then Theorem
1 implies R[[Y]] = R[[X]] = S[[ Y]] and Y is an analytic indeterminate
over R. Thus, S= W/(Y)= R. By symmetry we can reduce to
the case where both % and v are in the maximal ideal of W. For
we W, let w,eS be such that w = w,+ w, Y + ... Taking the
Y-coefficient of both sides of Y =75+ uX we get 1= 7, + 4, X, -
w, X, = 7, + w X, + uk. u, is in the maximal ideal since u is, so 7,
is invertible. Similarly #&', the X-coefficient of k is invertible.
Suppose for the moment that there is an R-endomorphism of R[[X]]
which takes X to k, and an S-endomorphism which takes Y to j.
In this case Theorem 1 would imply R[[k]] = R[[X]] = S[[Y]] with
k analytically independent over R, and R = S/(k)[[Y]] with Y an
analytic indeterminate over S/(k). Similarly, S = R/(5)[[X]] with X
analytically independent over RB/(j). However, (X, 5)=(X, Y)=(, Y)
so that S/(k) = W/(X, Y) = R/(j). This yield R=S. It remains
only to show the desired endomorphisms exist. W is certainly
complete with respect to (j) (or (%)), so by Theorem 2 and symmetry,
the result will follow from the following proposition.

PROPOSITION. Let R[[X]] = S[[Y]] = W where ¥ = j + uX and
X=Fk+ vY as above. If u is in J(W), then (= (") =0 as an
ideal in R.

Proof. Since N;-.(Y") =0, by Theorem 38 it suffices to show
that j[Nr-. (7] = Nz=. (™). Let A = Ny-.(5"). First assume that
Ann,j C A. Let fe A sothat f= jt, for some ¢, and f = j*, for
some ¢, given n. J(t, — j*°'t,) =0 implies ¢, — 5 '%,c A, which
further implies ¢, € (77!). Since n was arbitrary ¢, A. Thus, f€jA
and jA = A. Now let us show that Ann,j & A. It suffices to
show that fj° = 0 implies f e (j). Let fj* =0, in which case fY’ =
S G f7 M ur X, If we take the Y* coefficient of both sides, we get
fo expressed as a sum of terms of the form f, TonTvs Yoo, We, X, X,
where @, b,, ¢,, d,, are all integers, and 1 < & < 4. (Recall w; denotes
the Y* coefficient in S of w in S[[Y]].) Further, a + izt b, + S, c, +

=18, =% If such a term involves f,, i.e., ¢ = 0, then not all of
the bo,, ¢., and d, can be =1 since this would give 32" b, + 3k, ¢, +
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Sk dy= (i —h)+ h+ h>i. Thus, any term involving f, involves
either 7, u,, or X, each of which is in J(W). If a term does not
involve f,, then it must involve X, or j,. (If not then a + 3" b, +
Shse+ S d, =1+ (i —h)+ h>1) Since X,=k and j,c (%),
we have f, = af, + bk where acJ(W). Since 1— a is invertible,
fietk) S (k, Y) = (4, X). However, fe R so f<(j) as required.

COROLLARY. Let R[[X]]=S[[Y]],y=J+ uX, and X=k + vY.
Let P be a maximal ideal of R, and Q the maximal ideal of S such
that (P, X) = (Q, Y), then Rp = S, where the completion can be taken

with respect to the maximal ideals in question or with respect to
(DERs and (k)S,.

Proof. Let M= (P, X)=(Q, Y), then W, can be thought of
as a subring of R [[X]] or So[[Y]]. In either case the completion of
W, with respect to Mis all of R.[[X]] or Sy[[Y]] where R, is com-
pletion with respect to PR, and S’Q is completion with respect to
QS,. Thus, R, [[X]] = §Q[[Y]] and the result follows from Theorem
4. The proof of the other completion is similar, this time complete
W, with respect to (X, Y) = (5, X) = (k, Y).

THEOREM 5. If R is a complete semi-local ring, R is power-
mvariant.

Proof. Let R[[X]] = S[[Y]] =W, then W and S are also complete
semilocal. Since a complete semilocal ring is a direct sum of complete
local rings, the result follows from the corollary.

3. Existence of one to one maps. The following lemmas are
needed for our next result. With notation as in the introduction, we
keep the convention that if we W = R[[X]] = S[[Y]] that w, is the
Y*® coefficient in S of W, and we let w* denote the X* coefficient in
R of w. Since ¢ =0 and 7 = 1 are the only cases of interest, there
should be no confusion with exponents.

Define ¢: B — R by ¢(r) = ()"

LeMMA 1. With @, R, S, W, X, Y as above and Y =35 + uX,
X=k+ vY, we have (Y)N R < Ker¢ Z (5). ((j) denotes the ideal
of R generated by j).

Proof. Since Y, =0 the first containment is trivial. Now suppose
reR, and (r))° =0, then r,=tX and r=tX + fY. Since r = ¢°
r = nyO — foj.
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LEMMA 2. With everything as in Lemma 1, assume ¢(5) is
either zero or not a zero-divisor. Then Ker ¢ = 0, or Ker ¢ = (4).

Proof. If ¢(j) =0, Kerg = (j) by Lemma 1. If 4(j) #0, let
feKerg. f =ajalsoby Lemma 1. 0= ¢(f)¢(a)s(7), which implies
(@) = 0. Thus, ¢ =0>bj and it is clear that fe M, (5. Since
#(7) = (u,)°v"j is not a zero-divisor, j is not a zero-divisor. Thus
JIN=- (3] = N7= (4") = 0 by Theorem 8. Thus, f = 0 and Ker ¢ = 0.

LEMMA 3. With notation as above, j mot a zero-divisor implies
k is not a zero-divisor.

Proof. j mnot a zero-divisor implies {j, X} is a W-sequence.
Suppose k is a zero-divisor, then some element of S kills %k, say
sk =0. We get sX =svY. Now sv¢ (x) since then s would be a
multiple of Y. However, sX = svj + svuX makes svj a multiple of
X which is a contradiction. Thus, k is not a zero-divisor.

THEOREM 6. Let R[[X]]=S[[Y], Y=7+uX, X=Fk+vY. If
i and ¢(5) = (J,)° are not zero-divisors (unless 0), then there exist 1
to 1 maps from R into S and from S into R.

Proof. We need only consider the two cases of Lemma 2.

Case 1. Ker¢ = (j) = 0.

In this case R is actually isomorphic to S. Let A = Img. If
reR,r=r,+ wY for somewe W and r = r°* = (1)’ + 'Y’ = ¢(r) +
w’j. Thus, R = A+ (j), ¢ = ¢* and AN (5) = 0 all follow. R=A4 +
() = A+ jR implies R= A+ jA+ .-+ + j"A + j*"'R for any n.
R is complete with respect to (§) and also Hausdorfi as in the proof
of Lemma 2. Thus, B = A[[j]]. J not a zero-divisor and AN (5) =0
together imply that j is an analytic indeterminate over A so R =
A[[X]]. Wehave W=AJ[[k, Y]]. We next show that (Y) N A[[¥]] = 0.
Let te(Y)NA[[k]l. t=1ly=>2,a,k'. (Here a,€¢ A and ¢ is an
ordinary subscript.) a,€ ())NA=0s0 ly = 32, a.k’. Taking constant
terms in S we get 0= 3>, (a;)k*. Since k is not a zero-divisor
S (@)kit =0 and (a),€ (k). Thus, a,e(k, Y)NA=(G)NA=0.
By induction a; = 0 for all 7 and (Y) N A[[k]] = 0. But then A[[k]] =
W/(Y) = S. k not a zero-divisor and (k) N A < (j) N A =0 imply &
is also an analytic indeterminate over A and S = A[[X]] = R.

Case 2. Ker ¢ = 0.

Clearly the map from R to S which takes » to 7, is 1-1. Let
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¢ denote the map from S to S which takes s to (s°, Since k is not
a zero-divisor, ¢(k) is zero or not a zero-divisor. Thus, by Lemma 2
Ker¢ =0 or Ker¢ = (k). If Ker ¢ = (k) the above argument with
the role of R and S reversed yields R = S. If Kerg = 0, the map
from S to R which takes s to s° is 1-1.

Note. There is the following analogue of Theorem 6. The proof
is due to Nagata and appears in [1].

THEOREM 7. If R is an integral domain and R[X] = S[Y], then
there exist injective homomorphisms of R into S and S into R.

4. m-Variable case. I believe the work on power-invariance to
data has involved only one variable. It is natural to consider the
following question. When can one conclude S = R, if there exists
some #» such that R[[X,, ---, X ]] = S[[Y,, - -+, Y,]] where the X; and
Y, are independent analytic indeterminates over R and S respectively.
To wit, we give the following definition:

DEFINITION. R will be called “forever power-invariant” provided
S = R whenever there is a positive integer n such that S[[X, .-,
X1l = R[[X,, -+, X,]] where the X, are independent analytic inde-
terminates over R and S.

Induction readily yields the following:

THEOREM 8. If R is a quasi-local or a complete semi-local ring,
then R is forever power-invariant.

The next theorem generalizes the result that a ring with nilpotent
Jacobson radical is power-invariant under the 1-variable definition.
It also relaxes the nilpotent condition to a nil Jacobson radical.

THEOREM 9. If every element of J(R) is nilpotent, then R is
forever power-invariant.

Proof. Let R[[X,, ---, X, ]]I=S[IY,, ---, Y, ]]=W. Let X, Y denote
the vectors (X, ---, X,) and (Y, ---, Y,); J, K vectors in R and S
respectively such that Y=J+ XU, X =K + YV where U and V
are nan matrices with entries in W. Since J(R) is nil, each com-
ponent of the vector J is nilpotent. The key point is that if j is a
nilpotent element of R, every coefficient in its expression as an element
of S[[Y]] is also nilpotent. Now, careful examination of ¥ =J +
KU+ YVU vyields , ---,1) = J, + KU, + diag V,U, by taking the
Y, coefficient of the ith component of each side. Here J, denotes
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the result of this application to J; U, is the nxr matrix whose <th
column consists of the Y, coefficients of the 4th column of U; and
U,(V,) is the nxn matrix of constant terms of U(V). Since J; and K
have entries in J(S), (the elements of J, being nilpotent) the elements
of the diagonal of V,U, are invertible. The same is, of course, then
true for VU. By a similar scrutiny of the same, i.e., Y =J + KU +
YVU, this time taking the Y; coefficient of the 4th component of
both sides with ¢ = j, we get the entries of VU which are off the
diagonal to be in J(W). Thus, VU has an invertible determinant,
whence both V and U do, and both are invertible matrices. Thus,
if the maps from R[X] to R[[X]] which take R to R and X to
J+ XU or (X — J)U™" can be extended to R[X]] in the natural way,
they are clearly inverse maps, and thus R-automorphisms. In order for
the extensions to be made R[[X]] needs to be complete and Hausdorft
with respect to the ideal generated by the images of the {X;}. This
is clear in the case that X mapstoJ + XU =Y. R[[X]]is certainly
complete with respect to (5, +--, 5., Xy, +++, X,). Since the j; are
nilpotent and N7, (X, - -, X))k =0, Ni-. Gy ==oy Ty Xy o+, X)=0
which is equivalent to R[[X]] being Hausdorffi with respect to
Gy, ++*y Ju Xy, -+, X,). Thus, the map taking X to (X — J)U™ can
also be extended. Thus, R[[X]] = R[[Y]] and R = U/(Y) = S.
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