Pacific Journal of Mathematics

SCATTERED COMPACTIFICATION FOR $N \cup \{p\}$

M. JAYACHANDRAN AND M. RAJAGOPALAN

Vol. 61, No. 1

November 1975

SCATTERED COMPACTIFICATION FOR $N \cup \{p\}$

M. JAYACHANDRAN AND M. RAJAGOPALAN

In this paper, it is shown that the scattered space $N \cup \{p\}$ admits a scattered Hausdorff compactification for a large class of points p in $\beta N - N$. This gives a partial solution to the following problem raised by Z. Semadeni in 1959: "Is there a scattered Hausdorff compactification for the space $N \cup \{p\}$ where p is any point of $\beta N - N$?" (See "Sur les ensembles clairsemés," Rozprawy Matematyczne, 19 (1959).) The proofs are purely topological and the compactifications are easy to visualize.

In 1970, C. Ryll-Nardzewski and R. Telgarsky [5], using deep results from Boolean Algebras, have proved that $N \cup \{p\}$ has a scattered compactification if p is a P-point of $\beta N - N$. In the first section of this paper, it is shown that the space γN constructed by S. P. Franklin and M. Rajagopalan [1] serves as a scattered compactification for $N \cup \{p\}$ when p is a P-point of $\beta N - N$. In the second section, a scattered Hausdorff compactification for $N \cup \{p\}$ is provided, when p is a P-point of order 2 for $\beta N - N$ (definition follows). In this case, it is also shown that the compactification of $N \cup \{p\}$ is a space Y such that Y - N is a homeomorph of $[1, \Omega] \times \gamma N$.

DEFINITION 1.1. A *P*-point of $\beta N - N$ is said to be *P*-point of order 1 for $\beta N - N$. Suppose that for $n \in N$, we have defined a *P*-point of order *n*. Then we define a *P*-point of order n + 1 to be a *P*-point of the derived set of a countable set of *P*-points each being of order *n* in $\beta N - N$.

We will now proceed to get a scattered compactification for $N \cup \{p\}$ where p is a P-point of order 1 for $\beta N - N$, by constructing a suitable quotient space of βN which is scattered and Hausdorff and which contains $N \cup \{p\}$ as a dense subspace. The following two lemmas are easy to prove and their proofs are omitted.

LEMMA 1.2. Let p be a P-point of order 1 for $\beta N - N$. Then using continuum hypothesis $\beta N - N - \{p\}$ can be written as the union of a collection $\{F_{\alpha}\}_{\alpha \in [1,\Omega)}$ of clopen sets in $\beta N - N$ such that $F_{\alpha} \subset F_{\beta}$ for all $\alpha, \beta \in [1, \Omega)$ such that $\alpha < \beta$.

LEMMA 1.3. Let π be a partition of $\beta N - N$ such that the quotient space $(\beta N - N)/\pi$ is Hausdorff in its quotient topology. Let $\tilde{\pi}$ be the partition of βN where each member of N is a member of $\tilde{\pi}$ and each member of π is also a member of $\tilde{\pi}$. Then $Y = \beta N/\tilde{\pi}$ is compact and Hausdorff and the image of N in Y is an open discrete dense subspace of Y.

Further, if $(\beta N - N)/\pi$ is scattered in quotient topology, Y is also scattered in quotient topology.

LEMMA 1.4. Let $p \in \beta N - N$. Let π be a partition of $\beta N - N$ such that $\{p\} \in \pi$ and $(\beta N - N)/\pi$ is Hausdorff. Let $\tilde{\pi}$ be the partition of βN as described in Lemma 1.3. Let $\tilde{q}: \beta N \to \beta N/\tilde{\pi} = Y$ be the canonical map. Then \tilde{q} is a homeomorphism when restricted to $N \cup \{p\}$.

Proof. Clearly $\tilde{q} | (N \cup \{p\}) \colon N \cup \{p\} \to N \cup \{p\}$ is continuous, oneto-one and onto. Also $\tilde{q} \colon \beta N \to \beta N/\tilde{\pi}$ is continuous, βN is compact and by Lemma 1.3, Y is T_2 . Therefore \tilde{q} is a closed map and hence upper semi-continuous. Let $O \subset N \cup \{p\}$ be open relative to $N \cup \{p\}$. Then $O = (N \cup \{p\}) \cap \cup$ where \cup is open in βN . Let W be the union of all partition classes with respect to $\tilde{\pi}$ within \cup . Then, by the upper semicontinuity of \tilde{q} , W is open in βN . Since W is also saturated under $\tilde{\pi}, \tilde{q}(W)$ is open in $\beta N/\tilde{\pi}$. Also $W \cap (N \cup \{p\}) = O$ and hence $\tilde{q}(W) \cap \tilde{q}(N \cup \{p\}) = \tilde{q}(O)$. The refore, $\tilde{q}(O)$ is open relative to $\tilde{q}(N \cup \{p\})$. Thus, $\tilde{q} \mid (N \cup \{p\})$ is an open map. Therefore, $\tilde{q} \mid (N \cup \{p\})$ is a homeomorphism.

LEMMA 1.5. Let p be a P-point of $\beta N - N$. Then there exists a partition π for $\beta N - N$ such that (i) $\{p\} \in \pi$ and (ii) the induced quotient space $X = (\beta N - N)/\pi$ is homeomorphic to $[1, \Omega]$.

Proof. By Lemma 1.2, $\beta N - N - \{p\}$ can be written as $\bigcup_{\alpha \in [1,\Omega)} F_{\alpha}$ such that F_{α} is clopen in $\beta N - N$ for each α and $F_{\alpha} \subset F_{\beta} \forall \alpha, \beta \in [1, \Omega)$ such that $\alpha < \beta$. Put $H_1 = F_1$ and for each α such that $1 < \alpha < \Omega$, put $H_{\alpha} = F_{\alpha} - \bigcup_{1 \leq \tau < \alpha} F_{\tau}$, and put $H_{\Omega} = \{p\}$. Then the collection $\{H_{\alpha}\}_{\alpha \in [1,\Omega]}$ forms a partition π of $\beta N - N$ by closed sets in $\beta N - N$. Let q: $\beta N - N \rightarrow (\beta N - N)/\pi$ be the induced quotient map. Let $q(H_{\alpha}) = b_{\alpha}$ for all $\alpha \in [1, \Omega]$. Let τ_1 be the usual order topology induced on $\{b_{\alpha} | 1 \leq \alpha \leq \Omega\}$ by the bijection $b_{\alpha} \rightarrow \alpha$ from $\{b_{\alpha} | 1 \leq \alpha \leq \Omega\}$ onto $[1, \Omega]$ and let τ_2 be the quotient topology on $\{b_{\alpha} | 1 \leq \alpha \leq \Omega\}$ induced on it by the partition π of $\beta N - N$. Then the topologies τ_1 and τ_2 on $\{b_{\alpha} | 1 \leq \alpha \leq \Omega\}$ are both compact and Hausdorff and comparable and hence they are homeomorphic.

THEOREM 1.6. Let p be a P-point of order 1 for $\beta N - N$. Then $N \cup \{p\}$ has a scattered compactification.

Proof. Let π be the partition of $\beta N - N$ obtained as in Lemma

1.4. Then $\{p\} \in \pi$ and the quotient space $(\beta N - N)/\pi = X$ is homeomorphic to $[1, \Omega]$. Hence X is a compact, scattered and Hausdorff space. Let $\tilde{\pi}$ be the partition of βN as in Lemma 1.3. Then, by Lemma 4, $\beta N/\tilde{\pi}$ contains a homeomorphic copy of $N \cup \{p\}$. Since N is dense in $\beta N, N \cup \{p\}$ is dense in $\beta N/\tilde{\pi}$. Thus, $\beta N/\tilde{\pi}$ is a scattered, Hausdorff compactification for $N \cup \{p\}$.

REMARK 1.6a. The above scattered Hausdorff compactification of $N \cup \{p\}$ is a space X such that the remainder X - N is homeomorphic to $[1, \Omega]$. This compact Hausdorff space X is called γN by by S. P. Franklin and M. Rajagopalan in [1].

2. Scattered Hausdorff compactification for $N \cup \{p\}$ where p is P-point of order 2 in $\beta N - N$:

NOTATIONS. Let $p \in \beta N - N$. Let p be a P-point of order 2 in $\beta N - N$. Then there exists a countable set $\{p_1, p_2, \dots, p_n, \dots\}$ of distinct P-points in $\beta N - N$ such that P is a P-point of the set

$$B=\operatorname{cl}_{\scriptscriptstyle\beta N-N}\left\{p_{\scriptscriptstyle 1},\ p_{\scriptscriptstyle 2},\ p_{\scriptscriptstyle 3},\ \cdots,\ \cdots,\ p_{\scriptscriptstyle n},\ \cdots
ight\}-\left\{p_{\scriptscriptstyle 1},\ p_{\scriptscriptstyle 2},\ \cdots p_{\scriptscriptstyle n},\ \cdots
ight\}$$

LEMMA 2.7. There exists a countable collection $\{O_n\}_{n \in N}$ of clopen sets in $\beta N - N$ such that (i) $O_n \cap O_m = \emptyset$ for $n, m \in N$ such that $n \neq m$ and (ii) $p_n \in O_n \forall n = 1, 2, 3, \cdots$

Proof. Using the zero dimensionality of $\beta N - N$ and the fact that p_1 , is a *P*-point for $\beta N - N$, we can get a clopen set O_1 in $\beta N - N$ containing p_1 and disjoint with $\{p_2, p_3, \dots, p_n, \dots\} \cup \{p\}$. Since, p_2 is a *P*-point of $\beta N - N$, we get a clopen set F_2 in $\beta N - N$ containing p_2 and disjoint with $p_1, p_3, p_4, \dots, p_n, \dots, p$. Put $O_2 = F_2 - O_1$. Proceeding like this, by induction, for each $n \in N$, we can get a clopen set O_n in $\beta N - N$ satisfying the conditions (i) and (ii) of the Lemma 2.7.

LEMMA 2.8. Let O be any σ -compact subset of $\beta N - N$. Then $\mathbf{cl}_{\beta N-N}^{(0)} = \beta O$.

Proof. This follows from the fact that O is a dense subset of the compact set $cl_{\beta_{N-N}}(O)$ and any continuous function $f: O \rightarrow [0, 1]$ admits a continuous extension to βN .

COROLLARY 2.9. Let the collection $\{O_n\}_{n \in N}$ be as in Lemma 2.7. Let $\operatorname{cl}_{\beta_{N-N}}(\bigcup_{n=1}O_n) = M$. Then $\bigcup_{n=1}O_n$ is a σ -compact subset of $\beta N - N$ and $M = \beta(\bigcup_{n=1} O_n)$.

COROLLARY 2.10. Let $\{p_1, p_2, \dots, p_n, \dots\}$ be a countable collection of P-points of $\beta N - N$. Let $B = \operatorname{cl}_{\beta N - N} \{p_1, p_2, \dots, p_n, \dots\} - \{p_1, p_2, \dots, p_n, \dots\}$. Then $B \cup \{p_1, p_2, \dots, p_n, \dots\} = \beta(\{p_1, \dots, p_n, \dots)\}$.

NOTE 2.11. Let X be any Tychonoff space. Let $A \subset X$ be clopen in X. Then $\operatorname{cl}_{\beta_X} A$ is clopen in βX .

Proof. The function $f: X \rightarrow [0, 1]$ given by

$$f(x) = 0$$
, for all $x \in A$
= 1, for all $x \in X - A$

is continuous on X. Therefore, f admits a continuous extension \tilde{f} : $\beta X \rightarrow [0, 1]$. Then, it is clear that $\tilde{f}(x) = 0$ for all $x \in cl_{\beta X} A$ and $\tilde{f}(x) = 1$ for all $x \in \beta X - cl_{\beta X} A$. Hence, the result follows.

LEMMA 2.12. Let the collection $\{O_n\}_{n \in N}$ be as in Lemma 2.7. Let B be as in Corollary 2.10. Let $\operatorname{cl}_{\beta_{N-N}}(\bigcup_{n=1}O_n) = M$. Let $M - \bigcup_{n=1}O_n = K$. Then, there exists an increasing collection $\{A_{\alpha}\}_{\alpha \in [1,\Omega)}$ of clopen sets relative to K such that $\bigcup_{\alpha \in [1,\Omega)} A_{\alpha} = K - B$.

Proof. For each $n \in N$, p_n is a *P*-point of $\beta N - N$ and $p_n \in O_n$. Hence, p_n is a *P*-point of O_n for all $n = 1, 2, 3, \cdots$. Therefore, as in Lemma 1.2, using continuum hypothesis, for each $n \in N$, $O_n - \{p_n\}$ can be expressed as the union of an increasing collection $\{A_{\alpha n}\}_{\alpha \in [1, \Omega)}$ of clopen sets relative to O_n (and hence relative to $\beta N - N$ also). For each $n \in N$, put $A_{\alpha} = [\operatorname{cl}_{\beta N-N}(\bigcup_{n=1}^{\infty} A_{\alpha n})] \cap K$. Then, by Corollary 2.9 and Note 2.11 above, A_{α} is clopen relative to K for all $\alpha \in [1, \Omega)$. Since $A_{\alpha n} \subset A_{\beta n}$ for $\alpha < \beta$, α , $\beta \in [1, \Omega)$, it follows that $A_{\alpha} \subset A_{\beta}$ for all $\alpha, \beta \in [1, \Omega)$ such that $\alpha < \beta$.

Now it remains to show that $\bigcup_{\alpha \in [1,\Omega)} A_{\alpha} = K - B$. Clearly $A_{\alpha} \cap B = \phi$ for all $\alpha \in [1,\Omega)$ and hence $\bigcup_{\alpha} A_{\alpha} \subset K - B$. To get the other inclusion, let $x_0 \in K - B$. Now, K - B is open relative to K and K is zero-dimensional. Therefore, there exists a clopen set V relative to K such that $x_0 \in V \subset K - B$. Since $V \subset K$ is clopen in K and $\beta N - N$ is zero dimensional, there exists a clopen set W in $\beta N - N$ such that $V = W \cap K$. Put $W \cap O_n = W_n$ for all $n = 1, 2, 3, \cdots$ We note that p_n can belong to W_n for at most a finite number of n's. Therefore, $\exists k_0 \in N$ such that $p_n \notin W_n \forall n > k_0$. Hence, for each $n > k_0$, there exists a countable ordinal α_n such that $A_{\alpha_n n} \supset W_n$. Let the supremum of α_n for $n > k_0$, be γ . Then $A_{\gamma_n} \supset W_n \forall n > k_0$.

$$\bigcup_{n=k_0+1}^{\infty} A_{\gamma n} \supset \bigcup_{n=k_0+1}^{\infty} W_n$$

Hence,

$$\overline{\bigcup_{n=1}^{\infty} A_{7n}} \cap K = A_{\gamma} = \overline{\bigcup_{n=k_0+1}^{\infty} A_{\lambda n}} \cap K$$
$$= \overline{\bigcup_{n=k_0+1}^{\infty} W_n} \cap K$$
$$= \overline{\bigcup_{n=1}^{\infty} W_n} \cap K$$
$$= \overline{\bigcup_{n=1}^{\infty} (W \cap O_n)} \cap K$$
$$= W \cap M \cap K$$
$$= W \cap K$$
$$= V.$$

Also $x_0 \in V$. Therefore, $\bigcup_{\alpha \in [1, \Omega)} A_{\alpha} = K - B$.

LEMMA 2.13. Let B be as defined in Corollary 2.10 and let K be as in Lemma 2.12. Then, there exists a collection $\{X_{\alpha}\}_{\alpha \in [1,\Omega)}$ of clopen sets relative to K such that $X_{\alpha} \subset X_{\beta} \forall \alpha, \beta \in [1,\Omega)$ such that $\alpha < \beta$ and $[\bigcup_{\alpha \in [1,\Omega)} X_{\alpha}] \cap B = B - \{p\}.$

Proof. Now, p is a *P*-point of *B* and hence, using continuum hypothesis, $B - \{p\}$ can be written as the union of an ascending collection $\{B_{\alpha}\}_{\alpha\in[1,2)}$ of clopen sets relative to *B*. Since, by Corollary 2.10, $B \cup \{p_1, p_2, \dots, p_n, \dots\} = \beta(\{p_1, \dots, p_n, \dots\})$, each B_{α} gives a subset $N_{\alpha} = \{p_{n_1}^{\alpha}, \dots, p_{n_k}^{\alpha}, \dots\}$ of $\{p_1, p_2, \dots, p_n, \dots\}$ such that

$$\mathrm{cl}_{{}^{eta}N-N}(N_lpha)\cap B_lpha=B$$
 .

Since $B_{\alpha} \subset B_{\beta}$ for $\alpha < \beta$, we have N_{α} is almost contained in N_{β} for $\alpha < \beta$. Put $[cl_{\beta N-N}(\bigcup_{k=1} O_{n_k}^{\alpha})] \cap K = X_{\alpha} \forall \alpha \in [1, \Omega]$. Then X_{α} is clopen in $K \forall \alpha \in [1, \Omega), X_{\alpha} \subset X_{\beta}$ for $\alpha < \beta, X_{\alpha} \cap B = B_{\alpha} \forall \alpha \in [1, \Omega)$ and also $(\bigcup_{\alpha} X_{\alpha}) \cap B = \bigcup_{\alpha} (X_{\alpha} \cap B) = \bigcup_{\alpha} B_{\alpha} = B - \{p\}.$

LEMMA 2.14. Let the collection $\{O_n\}_{n \in N}$, M and K be as in Lemma 2.12. Let $\beta N - N - M = T$. Let $\{C_\alpha\} \ \alpha \in [1, \Omega)$ be an ascending collection of clopen sets relative to K. Then, there exists an ascending collection $\{I_\alpha\}_{\alpha \in [1,\Omega)}$ of subsets of $T \cup K$ such that each I_α is clopen in $T_\alpha \cup K$, $I_\alpha \cap K = C_\alpha \forall \alpha \in [1, \Omega)$ and $\bigcup_\alpha I_\alpha - \bigcup_\alpha C_\alpha = T$.

Proof. Using the fact that $\beta N - N$ is zero-dimensional and is of weight c and also using the fact that the clopen sets of $\beta N - N$

satisfy the Dubois-Reymond separability condition, we can write T as the union of an ascending collection $\{G_{\alpha}\}_{\alpha \in [1, \mathcal{Q})}$ of clopen sets in $\beta N - N$ such that $G_{\alpha} \cap M = \phi \forall \alpha \in [1, \mathcal{Q})$.

Now, C_1 is clopen in K. Since $\beta N - N$ is zero-dimensional, \exists a clopen set J_1 in $\beta N - N$ such that $J_1 \cap K = C_1$. Put $[J_1 \cap (T \cup K)] \cup$ $G_1 = I_1$. Then I_1 is clopen in $T \cup K$ and $I_1 \cap K = C_1$. Suppose that we have constructed clopen sets I_1, I_2, \dots, I_n in $T \cup K$ for $n \in N$ such that $I_1 \subset I_2 \subset \cdots \subset I_n$ and $I_j \cap K = C_j$ for $j = 1, 2, \cdots, n$. Then we construct I_{n+1} as follows: Since C_{n+1} is clopen in K and $\beta N - N$ is zero-dimensional, there exists a clopen set J_{n+1} in $\beta N - N$ such that $J_{n+1} \cap K = C_{n+1}$. Put $I_{n+1} = [J_{n+1} \cap (T \cup K)] \cup I_n \cup G_{n+1}$. Then I_{n+1} is clopen in $T \cup K$, $I_{n+1} \supset I_n$ and $I_{n+1} \cap K = C_{n+1}$. Having constructed $I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots$ we now proceed to construct I_{ω} . First, we claim that $\operatorname{cl}_{\beta_{N-N}}(\bigcup_{n=1}^{\infty} I_n) \cap (K - C_{\omega}) = \emptyset$. For, let $x_0 \in k - C_{\omega}$, which is clopen in K. Since $\beta N - N$ is zero-dimensional, there exists a clopen set H_{ω} in $\beta N - N$ such that $H_{\omega} \cap K = K - C_{\omega}$. Let $H_{\omega} \cap I_n =$ $H_{n\omega} \forall_n = 1, 2, 3, \cdots$. Then $H_{n\omega}$ is closed in $\beta N - N$. We will now prove that $H_{n\omega}$ is also open in $\beta N - N$. Since, I_n is clopen in $T \cup K$ and $\beta N - N$ is zero dimensional, there exists a clopen set Γ_n in $\beta N - N$ such that $\Gamma_n \cap (T \cup K) = I_n$. Then $\Gamma_n \cap [(T \cup K) \cap K] = I_n \cap K = C_n$. Now

$$\begin{split} H_{n\omega} &= (H_{\omega} \cap I_{n}) = H_{\omega} \cap [\Gamma_{n} \cap (T \cup K)] \\ &= H_{\omega} \cap [(\Gamma_{n} \cap T) \cup (\Gamma_{n} \cap K)] \\ &= (H_{\omega} \cap \Gamma_{n} \cap T) \cup (H_{\omega} \cap \Gamma_{n} \cap K) \\ &= (H_{\omega} \cap \Gamma_{n} \cap T) \cup [(K - C_{\omega}) \cap \Gamma_{n}] \\ &= (H_{\omega} \cap \Gamma_{n} \cap T) \cup [K \cap (K - C_{\omega}) \cap \Gamma_{n}] \\ &= (H_{\omega} \cap \Gamma_{n} \cap T) \cup [(C_{n} \cap (K - C_{\omega})] \\ &= H_{\omega} \cap \Gamma_{n} \cap T \text{ which is open in } \beta N - N. \end{split}$$

Therefore, $H_{n\omega}$ is clopen in $\beta N - N$. Also $\beta N - N - O_1$, $\beta N - N - (O_1 \cup O_2)$, \cdots form a decreasing countable collection of clopen sets in $\beta N - N$ such that $(\beta N - N - \bigcup_{i=1}^{n} 0_i) \supset H_{m\omega} \forall m, n = 1, 2, 3, \cdots$ Therefore, by Dubois-Reymond separability condition, there exists a clopen set H in $\beta N - N$ such that $H \subset T$ and $H \supset \bigcup_{n=1}^{\infty} H_{n\omega}$. Therefore, $(\beta N - N - H) \cap H_{\omega}$ is a clopen set in $\beta N - N$ and $x_0 \in (\beta N - N - H) \cap H_{\omega}$. Also $[(\beta N - N - H) \cap H_{\omega}] \cap (\bigcup_{n=1}^{\infty} I_n) = \emptyset$. Therefore $x_0 \notin \operatorname{cl}_{\beta N - N} (\bigcup_{n=1}^{\infty} I_n)$. Hence, $(K - C_{\omega}) \cap (\bigcap_{n=1}^{\infty} I_n) = \emptyset$. Now $C_{\omega} \cup \operatorname{cl}_{\beta N - N} (\bigcup_{n=1}^{\infty} I_n)$ and $K - C_{\omega}$ are disjoint closed sets in $\beta N - N$ which is normal. Threfore, there exist disjoint open sets D_1 , D_2 in $\beta N - N$ such that

$$D_1 \supset C_{\pmb{\omega}} \cup \operatorname{cl}_{{}^{eta}N-N} \left(igcup_{n=1}^{\pmb{\omega}} I_n
ight) \hspace{0.2cm} ext{and} \hspace{0.2cm} D_2 \supset K - C_{\pmb{\omega}} \; .$$

Now $\beta N - N$ is zero dimensional, $C_{\omega} \cup \operatorname{cl}_{\beta N-N} (\bigcup_{n=1}^{\infty} I_n)$ is a compact subset of $\beta N - N$ and D_1 is an open set in $\beta N - N$ containing $C_{\omega} \cup$ $\operatorname{cl}_{\beta N-N} (\bigcup_{n=1}^{\infty} I_n)$. Hence, there exists a clopen set J_{ω} in $\beta N - N$ such that $D_1 \supset J_{\omega} \supset C_{\omega} \cup \operatorname{cl}_{\beta N=N} (\bigcup_{n=1}^{\infty} I_n)$. Now, $J_{\omega} \cap D_2 = \emptyset$ and hence $(K - C_{\omega}) \cap J_{\omega} = \emptyset$. Therefore, $J_{\omega} \cap K = C_{\omega}$. Take $I_{\omega} = [J_{\omega} \cap (T \cup K)] \cup H_{\omega}$. Then I_{ω} is clopen in $T \cup K$, $I_{\omega} \supset \bigcup_{n=1}^{\infty} I_n$ and $I_{\omega} \cap K = C_{\omega}$. Continuing this process, we get an increasing collection $\{I_{\alpha}\}_{\alpha \in [1, \Omega)}$ of clopen sets in $T \cup K$ such that $I_{\alpha} \cap K = C_{\alpha} \forall \alpha \in [1, \Omega)$. It can also be seen that $\bigcup_{\alpha} I_{\alpha} - \bigcup_{\alpha} C_{\alpha} = T$.

COROLLARY 2.15. Let the collection $\{A_{\alpha}\}_{\alpha \in [1,\Omega)}$ be as in Lemma 2.12. Then, there exists a collection $\{S_{\alpha}\}_{\alpha \in [1,\Omega)}$ of clopen sets in $T \cup K$ such that $S_{\alpha} \subset S_{\beta} \forall \alpha, \beta \in [1, \Omega)$ such that $\alpha < \beta, S_{\alpha} \cap K = A_{\alpha} \forall \alpha \in [1, \Omega)$ and $\bigcup_{\alpha} S_{\alpha} - \bigcup_{\alpha} A_{\alpha} = T$.

COROLLARY 2.16. Let the collection $\{x_{\alpha}\}_{\alpha \in [1,\Omega]}$ be as in Lemma 2.13. Then, there exists an increasing collection $\{L_{\alpha}\}_{\alpha \in [1,\Omega]}$ of clopen sets in $T \cup K$ such that $L_{\alpha} \bigcap_{\kappa} = X_{\alpha} \forall \alpha \in [1,\Omega]$ and $\bigcup_{\alpha} L_{\alpha} - \bigcup_{\alpha} X_{\alpha} = T$.

DEFINITION 2.17. Let σ_1 and σ_2 be two partitions of a nonempty set X. Then we define $\sigma_1 \cap \sigma_2$ to be the partition of X given by the collection $\{A \cap B | A \in \sigma_1, B \in \sigma_2, A \cap B \neq \emptyset\}$ of nonempty subsets of X.

LEMMA 2.18. Let X be a compact Hausdorff space. Let σ_1, σ_2 be two Hausdorff partitions for X. Then $\sigma_1 \cap \sigma_2$ is also a Hausdorff partition for X.

Proof. Let $X/\sigma_1 = Y_1$ and $X/\sigma_2 = Y_2$. Let $q_1: X \to Y_1$ and $q_2: X \to Y_2$ be the corresponding quotient maps. Define $(q_1, q_2): X \to Y_1 \times Y_2$ by $(q_1, q_2)(x) = (q_1(x), q_2(x)) \forall x \in X$. This is a continuous function form Xinto $Y_1 \times Y_2$. Now $Y_1 \times Y_2$ is Hausdorff. Consider (q_1, q_2) as a map from X onto $(q_1, q_2)(X)$. Let the partition induced on X by this map be σ . Then $\sigma = \sigma_1 \cap \sigma_2$. Let $q: X \to X/\sigma$ be the corresponding quotient map. Let $g: X/\sigma \to (q_1, q_2)(X)$ be the natural fill-up map making the following diagram commutative.

Now X/σ is compact, $(q_1, q_2)(X)$ is Hausdorff and g is one-to-one, onto and continuous. Hence g is a homeomorphism. Since $(q_1, q_2)(X)$ is Hausdorff, it follows that X/σ is Hausdorff. Therefore $\sigma_1 \cap \sigma_2$ is a Hausdorff partition for X.

In the above proof, we also note that the quotient space induced by $\sigma_1 \cap \sigma_2$ is homeomorphic to the range of the function (q_1, q_2) in $Y_1 \times Y_2$.

LEMMA 2.19. Let T and K be as in Lemma 2.14. Let B and p be as in Lemma 2.13. Then, there exists a Hausdorff partition for $T \cup K$ with $\{p\}$ as a separate partition class.

Proof. Let the collection $\{S_{\alpha}\}_{\alpha \in [1,2)}$ be as in Corollary 2.15 and let the collection $\{L_{\alpha}\}_{\alpha \in [1,2)}$ be as in Corollary 2.16. Put $H_1 = S_1$ and for each $\alpha \in [2, \Omega)$, $H_{\alpha} = S_{\alpha} - \bigcup_{1 \leq 7 < \alpha} S_7$ and $H_{\Omega} = K - \bigcup_{\alpha} A_{\alpha} = B$. Also, let $M_1 = L_1$; for each $\alpha \in [2, \Omega)$, $M_{\alpha} = L_{\alpha} - \bigcup_{1 \leq 7 < \alpha} L_7$ and $M_{\Omega} =$ $K - \bigcup_{\alpha \in [1,\Omega)} X_{\alpha}$. Then, the collection $\{H_{\alpha}\}_{\alpha \in [1,\Omega)}$ gives a partition π_1 for $T \cup K$ such that the quotient space $(T \cup K)/\pi_1$ is homeomorphic to $[1,\Omega]$. Therefore, π_1 is a Hausdorff partition for $T \cup K$. Similarly, the collection $\{M_{\alpha}\}_{\alpha \in [1,\Omega]}$ gives a Hausdorff partition π_2 for $T \cup K$. Let $\pi_1 \cap \pi_2 = \pi_3$. Then, by Lemma 2.18, π_3 is a Hausdorff partition for $T \cup K$. Also

$$egin{aligned} H_{arphi} \cap M_{arphi} &= B \cap \left(K - igcup_{lpha} X_{lpha}
ight) \ &= B - igcup_{lpha} \left(B \cap X_{lpha}
ight) \ &= B - igcup_{lpha} B_{lpha} = \left\{p
ight\} \,. \end{aligned}$$

LEMMA 2.20. Let X be a topological space. Let A_1 and A_2 be closed in X. Let $A_1 \cup A_2 = X$. Let $A \subset X$ be such that $A \cap A_1$ is open relative to A_1 and $A \cap A_2$ is open relative to A_2 . Then A is open in X.

Proof. This follows from the fact that

$$A = (O_1 - A_2) \cup (O_2 - A_1) \cup (O_1 \cap O_2)$$
 .

LEMMA 2.21. Let π_s be the partition of $T \cup K$ as obtained in the proof of Lemma 2.19. Let the collection of sets $\{A_{\alpha_k}\}_{\substack{\alpha \in [1, \Omega) \\ k \in N}}$ be as obtained in the proof of Lemma 2.12. Let $\{p_1, p_2, \dots, p_n, \dots\}$ be as in Corollary 2.10. For each $k \in N$, let $D_{\alpha_k} = A_{\alpha_k} - \bigcup_{1 \le T < \alpha} A_{\tau_k}$. Then the collection of sets $\{D_{\alpha_k}\}_{\substack{\alpha \in [1, \Omega) \\ k \in N}}$ and $\{p_n\}_{n \in N}$ together with the members of π_s form a Hausdorff partition π_4 for $\beta N - N$. **Proof.** Clearly π_4 is a partition for $\beta N - N$. We will now prove that $(\beta N - N)/\pi_4$ is Hausdorff. Given any two partition classes C_1 and C_2 of $\beta N - N$ with respect to π_4 , we must prove that there exists a clopen set Y_1 in $\beta N - N$ containing C_1 , disjoint with C_2 and saturated under π_4 . The cases where either C_1 or C_2 is a D_{α_k} or a p_n are easy to handle and we consider the following cases:

Case 1. Let $C_1 = H_{\alpha} \cap M_{\beta}$ and $C_2 = H_{\alpha} \cap M_{\gamma}$ where $\alpha, \beta, \gamma \in [1, \Omega]$ and $\beta \neq \gamma$. Without loss of generality, we can assume that $\beta < \gamma$. Now, by definition $X_{\beta} = cl_{\beta N-N}(\bigcup_{k=1}^{\infty} O_{n_k^{\beta}}) \cap K$ where $cl_{\beta N-N}(\{p_{n_1^{\beta}}, \dots, p_{n_k^{\beta}}, \dots\}) \cap B = B_{\beta}$ (see the proof of Lemma 2.13). Also $L_{\beta} \cap K = X_{\beta}$ where L_{β} is clopen in $T \cup K$ (see Corollary 2.16). Now, $Y_1 = L_{\beta} \cup cl_{\beta N-N}(\bigcup_{k=1}^{\infty} O_{n\beta})$ is closed in $\beta N - N$ and using Lemma 2.20, we can see that it is also open in $\beta N - N$. Further $Y_1 \supset C_1$ and $Y_1 \cap C_2 = \emptyset$. Also, Y_1 is saturated under π_4 .

Case 2. Let $C_1 = H_{\alpha} \cap M_{\beta}$ and $C_2 = H_{\gamma} \cap M_{\delta}$ where $\alpha, \beta, \gamma, \delta \in [1, \Omega]$ and $\alpha \neq \gamma$. Without loss of generality, we can assume that $\alpha < \gamma$. In this case, using Lemma 2.20, we can verify that the set $Y_1 = \operatorname{cl}_{\beta N-N} (\bigcup_{n=1}^{\infty} A_{\alpha_n}) \cup S_{\alpha}$ is clopen in $\beta N - N$. Further, $Y_1 \supset C_1$ and $Y_1 \cap C_2 = \emptyset$. Also Y_1 is saturated under π_4 . Therefore, π_4 is a Hausdorff partition for $\beta N - N$.

LEMMA 2.22. Let π_{4} be the Hausdorff partition of $\beta N - N$ as given in Lemma 2.21. Let π_{5} be the partition of M given by $\pi_{5} = \pi_{4}|M = \{X \cap M | X \in \pi_{4}\}$. Then π_{5} is a Hausdorff partition for M.

Proof. Let D_{α_k} , p_n , B and O_n be as in above lemmas. Let $E_1 = A_1$ and $E_{\alpha} = A_{\alpha} - \bigcap_{1 \leq r < \alpha} A_r$, $\forall \alpha \in [2, \Omega)$. Then, it is easy to see that the partition π_6 of M given by the collection $\{D_{\alpha_k}\}\alpha \in [1, \Omega]k \in N, [p_n\}_{n \in N}, \{E_{\alpha}\}_{\alpha \in [1,\Omega]}$ and B is a Hausdorff partition for M. Let $K_1 = X_1$ and $K_{\alpha} = X_{\alpha} - \bigcup_{1 \leq r < \alpha} X_r \forall \alpha \in [1, \Omega]$. Also, let $K_{\Omega} = K - \bigcup_{\alpha \in [1,\Omega]} X_{\alpha}$. Then, the partition π_7 of M given by the collection $\{O_n\}_{n \in N}$ and $\{K_{\alpha}\}_{\alpha \in [1,\Omega]}$ is also a Hausdorff partition for M. Further $\pi_5 = \pi_6 \cap \pi_7$. Hence, by Lemma 2.18, π_5 is a Hausdorff partition for M.

LEMMA 2.23. Let M, π_4 and π_5 be as in previous lemmas. Then M/π_5 is homeomorphic to $(\beta N - N)/\pi_4$.

Proof. Let $(\beta N - N)/\pi_4 = Y$ and let $q_4: \beta N - N \to Y$ be the quotient map induced by the partition π_4 of $\beta N - N$. Then, by Lemma 2.21, Y is Hausdorff. Now, the map $q_4/M: M \to Y$ is a continuous function from M onto Y where M is compact and Y is Hausdorff. Hence, the topology of Y is the quotient topology of M induced on

it by the function q_4/M . But q_4 induces the partition π_5 on M. Therefore, M/π_5 is homeomorphic to $Y = (\beta N - N)/\pi_4$.

LEMMA 2.24. Let all notations be as in previous lemmas. Then $M/\pi_{\mathfrak{s}}$ is homeomorphic to $\gamma N \times [1, \Omega]$ where γN is the compactification of N constructed by S. P. Frankline and M. Rajagopalan in [1]. (See also remark 1.6a).

Proof. Now $\pi_{\mathfrak{s}} = \pi_{\mathfrak{h}} \cap \pi_{\tau}$ where $\pi_{\mathfrak{s}}$ and π_{τ} are Hausdorff partitions of M as given in the proof of Lemma 2.22. Let $q_{\mathfrak{s}}: M \to M/\pi_{\mathfrak{s}}$ and $q_{\tau}: M \to M/\pi_{\mathfrak{s}}$ be the corresponding quotient maps. Consider the function $(q_{\mathfrak{s}}, q_{\tau}): M \to M/\pi_{\mathfrak{s}} \times M/\pi_{\mathfrak{r}}$ given by $(q_{\mathfrak{s}}, q_{\tau})(x) = (q_{\mathfrak{s}}(x), q_{\tau}(x)) \forall x \in M$. Since $\pi_{\mathfrak{s}} \cap \pi_{\tau} = \pi_{\mathfrak{s}}$, it follows from Lemma 2.18 that $M/\pi_{\mathfrak{s}}$ is homeomorphic to the range of the function $(q_{\mathfrak{e}}, q_{\tau})$ from M into $M/\pi_{\mathfrak{s}} \times M/\pi_{\tau}$. But it can be seen that $M/\pi_{\mathfrak{s}}$ is homeomorphic to $[1, \Omega] \times [1, \omega]$ with its usual product topology and M/π_{τ} is homeomorphic to $[1, \Omega] \times \gamma N$. Hence, $M/\pi_{\mathfrak{s}}$ is homeomorphic to $[1, \Omega] \times \gamma N$.

THEOREM 2.25. $N \cup \{p\}$ has a scattered Hausdorff compactification, when p is a P-point of order 2 for $\beta N - N$.

Proof. Consider the partition π_4 of $\beta N - N$ given in Lemma 2.21. Let $\tilde{\pi}_4$ be the partition of βN whose members are the members of π_4 and the singletons in N. Since, $(\beta N - N)/\pi_4$ is Hausdorff, by Lemma 1.3, it follows that $\beta N/\tilde{\pi}_4$ is Hausdorff. Since βN is compact, we have $\beta N/\tilde{\pi}_4$ is compact. Since $(\beta N - N)/\pi_4$ is homeomorphic to $[1, \Omega] \times \gamma N$ which is scattered, we have that $\beta N/\tilde{\pi}_4$ is also scattered. Since N is dense in βN and $N \cup \{p\}$ maps homeomorphically onto itself under the quotient map from βN onto $\beta N/\tilde{\pi}_4$ is a scattered Hausdorff compactification for $N \cup \{p\}$. Hence the theorem.

REFERENCES

1. S. P. Franklin and M. Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc., 155 (1974), 305-314.

2. V. Kannan and M. Rajagopalan, On scattered spaces, Proc. Amer. Math. Soc., 43 (1974), 402-408.

3. S. Mrowka, M. Rajagopalan and T. Soundararajan, A Characterisation of Compact Scattered Spaces Through Chain Limits (Chain Compact Spaces), TOPO 72 General Topology and Its Applications-Second Pittsburgh International Conference, 1972, Springer-Verlag, Berlin (1974), 288-297.

4. M. Rajagopalan, Sequential order and spaces S_n , to appear in Proc. Amer. Math. Soc., 1976.

5. C. Ryll-Nardzewski and R. Telgarsky, On scattered compactification, Bull. Acad.

Sci. Poland, 18 (1970), 233-234.

6. Z. Semadeni, Sur les ensembles clairsemes, Rozprawy Math., 19 (1959).

7. W. Sierpinski, Sur ene propriete topologique des ensembles denombrables denses en soi, Fun. Math., 1 (1920), 11-16.

Received November 27, 1974 and in revised form July 21, 1975. The second author gratefully acknowledges his support from a grant from Memphis State University during the writing of this paper.

Memphis State University and Madura College, Madurai, India

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

R. A. BEAUMONT University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

F. WOLF

E. F. BECKENBACH

B. H. NEUMANN

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of MathematicsVol. 61, No. 1November, 1975

Jiří Adámek, V. Koubek and Věra Trnková, <i>Sums of Boolean spaces represent every</i>	
<i>group</i>	1
Richard Neal Ball, Full convex l-subgroups and the existence of a*-closures of	
lattice ordered groups	7
Joseph Becker, <i>Normal hypersurfaces</i>	17
Gerald A. Beer, <i>Starshaped sets and the Hausdorff metric</i>	21
Dennis Dale Berkey and Alan Cecil Lazer, <i>Linear differential systems with</i>	29
Harald Boehme, <i>Clättungen</i> von Abbildungen 3 dimensionaler	2)
Manniofaltiokeiten	45
Stephen I aVern Campbell Linear operators for which T^*T and $T \perp T^*$	15
commute	53
H P Dikshit and Arun Kumar Absolute summability of Fourier series with	00
factors	59
Andrew George Farnest and John Sollion Hsia Spinor norms of local integral	07
rotations II	71
Frik Maurice Ellentuck Semigroups Horn sentences and isolic structures	87
Ingrid Fotino, Generalized convolution ring of arithmetic functions	103
Michael Pandy Gabel Lower bounds on the stable range of polynomial rings	117
Engues John Coines, Kato Taugala, Wielandt commutator relations and	11/
characteristic curves	121
Theodore William Gamelin, <i>The polynomial hulls of certain subsets of</i> C^2	129
R. J. Gazik and Darrell Conley Kent, <i>Coarse uniform convergence spaces</i>	143
Paul R. Goodev. A note on starshaped sets	151
Eloise A. Hamann, <i>On power-invariance</i>	153
M Javachandran and M Rajagonalan Scattered compactification for $N \cup \{P\}$	161
V Karunakaran Certain classes of regular univalent functions	173
John Cronan Kieffer. A ratio limit theorem for a strongly subadditive set function in	175
a locally compact amenable group	183
Siu Kwong Lo and Harald G. Niederreiter. <i>Banach-Buck measure, density, and</i>	105
uniform distribution in rings of algebraic integers	191
Harold W Martin Contractibility of topological spaces onto metric spaces	209
Harold W Martin Local connectedness in developable spaces	219
A Meir and John W Moon <i>Relations between packing and covering numbers of a</i>	217
tree	225
Hiroshi Mori Notes on stable currents	235
Donald I. Newman and I. I. Schoenberg, Splings and the logarithmic function	241
M Ann Piech Locality of the number of narticles operator	259
Fred Dichmon, The constructive theory of KT, modules	255
General Sigekama, Caughthéodom, and Hally, numbers of	205
convex-product-structures	275
Raymond Earl Smithson, <i>Subcontinuity for multifunctions</i>	283
Gary Roy Spoar, Differentiability conditions and bounds on singular points	289
Rosario Strano, Azumaya algebras over Hensel rings	295