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If f(z) and ¢(z) are starlike functions of orders a and 7
for a, re[0, 1), then it is shown that

2 z
-2 d
F@) =2 gof(t) ¢

is p-starlike for |z| < J, where & is a function of «, 8, 7.
Conversely, a sharp estimate is obtained for the radius of
B-starlikeness of the class of functions

f2) =27 gF @) ,

where g(z) and F'(z) are starlike functions of orders 7 and «
respectively, with a + 7 = 1.

Let S denote the family of functions f(z) which are regular and
univalent in the unit disc E of the complex plane and which satisfy
the conditions f(0) = 0 = f'(0) — 1. Let S*C S denote the class of
starlike functions, namely those members of S which map E onto a
domain that is starlike with respect to the origin. Libera [2] showed
that if f(z2) € S*, then

(1) Fe) = 2\ swat
2 Jo

also belongs to S*. In the converse direction, Livingston [4] has
studied the mapping properties of the funection

f(2) = 27'(zF(2))

where F(z)e S*. The object of this paper is to generalize these
results of Libera and Livingston by choosing instead of S* the class
S*(a) of starlike functions of order a and replacing the definition of
F(z) in (1) by

(2) Fe) = 2\ syt

9(z) Jo
where f(z) and ¢(z) are starlike functions of orders a and 7 respec-
tively. Extensions of the results of Libera and Livingston in other

directions were made by Padmanabhan [6], Nikolaéva and Repninj,
[5], Bernardi [1].

THEOREM 1. If f(2)e S*(a) and g(z)c S*(7), then the function
F(z) defined by
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-2 (°
F) = 25 |, 7@t

is B-starlike for |z| < o = o(a, B, V) where o is given by

o[l + 2a — 27 — ]
=[@—a—+1- A1 +2a—27— QI —QC—a—7)

when 1+ 20 —27v —B+#0, 200 —a—7)=1—8 when B =1+
2 — 27,

Proof. Let P(a) denote the class of all regular functions p(z)
in E which satisfy the conditions p(0) = 1, Re[p(»)] > a 0= a <1).
Examining the proof of Lemma 1 in[2] we easily find that if N and
D are regular in E, N(0) = D(0) = 0, D maps E onto a many-sheeted
region which is starlike with respect to origin and N'/D’e P(«), then
N/De P(x). Further we note that

o) = | iy,

where f(z)e S*(«), is 2-valently starlike with respect to origin by
[2, Lemma 2]. Now F(z) = 20(z)/9(z) where o(z) = Sof(t)dt. So,

2F'(2)|F(z) = (20'(2)/0(2)) — (29'(2)/9(2))
= (20'(2) — 0(2))/0(2) + 1 — (29'(2)/9(2)) ,

0(z) being 2-valently starlike. If we choose N(z) = z0'(z) — a(z),
D(z) = 0(z), then N'/D' = z0"(z)/0'(z) = zf'(2)/f(z) is a member of
P(a). From the above observations we conclude that {20'(z) — 0(z)}/o(z)
is also a member of P(a). Now, g(z) € S*(7) and so

?

F'(z) 1+Q@ex—1r 1—0@7—r
R [z— =1 —
e F) 1 + 147 1—17r

since p(z) = 2f'(2)/f(2) € P(«) implies Re[p(z)] = (1 + Ca — 1)r)/(1 + r)
on |z| =7, by a known result. Thus Re [zF'(z)/F(z)] =B on |z| =17
and hence F(z) will be g-starlike for |z| < r, if

1+@r—1r 1—(27—1Lr
1 — >4.
T, 1—r =7

This condition gives » < o where ¢ is as given in Theorem 1.
Theorem 1, together with the fact that every convex function is a
starlike function of order 1/2, implies the following corollary.

COROLLARY. If f(z) € S*(@) and ¢(z) is a convex univalent func-
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tion in E, then the function

__2
R =25 So f(t)dt

1s B-starlike for |z| < o(a, B, 27).

The limiting case ¥—1 while @ = 8 =0 gives the result of
Libera [2].

Before proving our main theorem on a partial converse of
Theorem 1, we prove two elementary lemmas which are important
for our considerations.

LEMMA 1. Suppose p(z) = [1 + Dw(z)][1 + Bw(z)]™* where w(z) is
regular in EH, w(0) =0, |wz)| <1 for ze E and —1<D<BZ=1;
then for any C = B, we have on |zl =7r <1,

D ] _[r1Bp) = D}~ |1 - p(a)
Re [Cp(Z) + p(z)] [ 1 =) [p@)] ]

- {Pl(r) for B, = R, ,
- PZ(T) fOT RO = R1 ’

where

20 = (5 5) + P55y

Pyr) = (1__27:5{(1 L D)L+ C— (DA +C) + B + Oy
+ D(B* + Cyr']* — (1 — BDrY} ,
e _(L+ D)~ Dr)
" (1+C)—r(C + B)

and

1+ Dr

R, = ;
14 Br

Proof. A hint for the following proof is in [7]. »(z) is sub-
ordinate to the linear fractional transformation (1 + Az)/(1 + Bz) and
from this it follows by elementary arguments that

lpR) —al=d,

where
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a_~1~BDr2 d__(B—D)T

_1__B2,,.2’ 1_Bz,,.z’

If p() =a + u + v with a as defined above and R*= |p(z)[* =
(¢ + u)* + v*, then by a simple computation

R Cp(a) + 2. | - {£1Be@) = DP— 1= 2@}

p(2) (1 — 7))
_ D@ +w) . (1 — B7»)(u' + " — d)
=C
(@ + w) + T T— 7k
= S(u, v), say .
Then
2w v) _ ypp(R)
ov ’
where
T(R) = —2D(a + u) + 2R*1 — )71 — B7?)
+ R(1 — r)'(1 — B»r¥)(d? — u* — v%) .
Evidently,

T(R) = 2(a + u)[<11—_BL) (@ — d) — D] >0,
—

since R>a +u=a —d, as is easily verified. Thus S(u, v), as a

function of v, attains its minimum when v = 0 and the minimum

value is given by

Min S(u, v) = S(u, 0) = L(R) = CR + %
1— B \Lips o s om0
+ (B R + 0 - 2R - a1,

since » = 0 implies ¢ + v = R. The absolute minimum of L(R) is
attained at R = R, = (m/l)"?, where

m=D+(1—1)a - d)l — B,
I1=C+(1—m'(1—Br).

However, since a —d < R < a + d, R takes the value B, only when
a—d=<R,<a+d. Itcan be verified that R, < o + d, while B, may
not always be greater than (¢ — d). Further if R, <a —d =< R,
then R: = m/l < R? and so L(R) is a monotonic increasing function of
R. Thus L(R) attains its minimum L(e —d) at R=a —d. A
computation shows that L(a — d) = P(r) and L(R,) = Py(r) where
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P(r) and P,(r) are as defined in Lemma 1. This completes the proof
of Lemma 1.

LEMMA 2. If w(z) ts regular in E and satisfies |w(2)| = | 2|
for ze B and p(2) = [1 + Dw(2)][1 + Bw(2)]™, then

Re {[1 ¥ Bw(zzfgl;[(1Z)+ Dw(z)]} = (B——lp‘)'z{R [ 2@ 5P (z)]

_ [7"2 | Bo(z) — D* — |1 — P(z)P]
1 — ) [p()]

—w+my

Proof. @(z) = 2z 'w(z) satisfies |@(2?)] <1 in E and so by a well-
known result, we have,

[9'(x) =1 — |02(x) A — [2])".
Thus using @(2) = 2z 'w(z), we get
l2w'(2) — w(@)| < (* — |w(z) YA — 7).

So we have on |2| = 7,

2w'(2) w(z)
Re {[1 + Bw(2)][1 + Dw(z)]} = Re {[1 + Dw(z)][1 + Bw(z)]}
r* — [w(z)
{(1 —r) |1+ Dw()||1 + B'w(z)(}

A simple computation using w(z) = (1 — p(2))(Bp(z) — D)™, gives the
inequality stated in Lemma 2.

THEOREM 2. Let g(z) € S*(7) and F(z)e S*(a) and define f(z) by
F)g(z) = 28 f)dt

or, equivalently, by

f(2) = 27(g()F(2)) ,

then for |z| =1,

Re[zf’(z)] - ; P(r) for B, < R,,
f(z) 17 (Pfr) for R, =2 R,

where
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ey >[11++“i”] A7rg -

sy

R:=(Q1+ 4)1 — Ar)/(4 — 24)1 — ),
=01+ Ar)/A +7),

2

and
A=a+v-1.

These bounds are sharp.

Proof. 2f(2) = d@F' (@) + FAg'@) -
So
22f(z) _ zF'(z) | 20'(c)
(3) FD - F@ | ek

F(z)e S*(a) and g(z)e S*(v) imply that zF'(z)/F(z)c P(a) and
29'(2)/9(z) € P(7). Thus zf(z)/9(z)F(z)e P((@ + 7)/2) and so, by a
well-known representation formula, we have

2f(z)  _ 1+ Aw(z)
9(R)F(z) 1+ w(z)

where A = @ + 7 — 1 and w(z) is regular in E and satisfles |w(z) | = | 2|
for ze E. Let p(z) = [1 + Aw(z)][1 + w(2)]™*, then we have

(4) 2f(2) = 9(2)F(2)p(2) .
Thus,
2'(2) _20'(R) | 2F"(2) , 2P'(2)

f(2) 9(z) F(z) p(2)

— 2p(2) + ”’((?) 1,

using (3) and (4). Now,

zp'(z) . —(1— Aew'@)
() [1+ Aw@IA + w(z)]

An application of Lemma 2 and then Lemma 1 with C =3 — 24,
B =1and D = A gives immediately the inequality stated in Theorem 2.

We now show that the bounds are sharp. Let us choose g,(z) ¢
S*(7) and F\(z) € S*(a) defined by the formulas,
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201(2) _ 1+ (2Y — Dw,(s) 2Fi(2) _ 1+ (2 — Dw,(2)
9:(2) L+w() = F 1+ w()

The corresponding f,(z) = 27(g.(2)F.(z)) satisfies

— zf1(2) — 1+ Aw(2) — —
P 9:()F(2) 1+ wfz) ° Azarr—tb

From the proof of Lemma 1 it is evident that the bounds P(r) and
P,(r) will be attained only when R =a — d and R = R, respectively,
where R =|p(z)| = Rep(2). Since a —d =1+ Ar)/L + r), the
function w,(z) = z will give g,(2), F.(z) such that | »,(z)| = Re p.(z) =
a —d at z = r and so the bound P,(r) will be attained by the corres-
ponding function zfi(2)/f.(2), at z = », for all » satisfying R, < R,.
When R, = R, =a — d, we choose w,(2) = z(z — q)/(L — qz) where ¢
is determined by the condition that 2,(2) = (1 + Awy(2))/(1 + ws(2))
satisfies | py(z)| = R, = Re py(2) at z = r. Now we have

ea—d=R =R, =<a-+4d,
80

1+Ar 14+ AT _1-— Ar
1+ — 14+T 7 1—17r

2

where T = w,(r) and this in turn implies one of the three following
equivalent conditions,

r’(r — q)° _ T < g2
A—ay ~ =7
r=1,
lgl=1.
So w,(z) is indeed subordinate to z in E and hence p,(z) belongs to

P((« + 7)/2). Clearly, g.(z)e S*(7) and Fy(z)e S*(«) defined by the
formulas

2g:() _ 1+ (27 — Dwy(z) 2Fy(z) _ 1+ (2a — Hyw,(z)
2:(2) 1 + wy(2) " F 2(2) 1 + wy(z)

give rise to f,(2) which satisfies | p(r)| = Re p,(r) = R,, where

2f(2) _ 1+ Aw,(z)
(@) Fz) 1+ wz)

and so zf3(2)/f«(2) attaing the bound Py(r) at z = r.

pi2) =

THEOREM 3. If the family Q ts defined by
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Q = {f(2) = 27(9(2) F'(2))’; 9(z) € S*(7), F(2) € S*(a) and & +7 =1},

then the radius of B-starlikeness of the family Q is the least positive
root of the equation P(r) — 8 =0, where P,(r) is as defined in
Theorem 2.

Proof. By Theorem 2, the minimum of Re (2f'()/f(2)) for f
belonging to @ is P(r) for all |z| = r satisfying B, < R,. Thus, for
R, < R,, the requirement that f(z) be p-starlike for |z| < r gives
the condition on 7 as P(r) — 8 = 0. This condition will be true for
all values of r» < ¢ where ¢ is the least positive root of the equation
P(r) — 8 =0, since P(0) — B3>0 for all ge[0,1). It remains to
verify that o also satisfies the condition

(RO)T=0 é (Rl)r=a .
For this we note that RB: = (1 + A)1 — Ar?)/(1 — r*)(4 — 24) and so

dr (1 — 4 — 24)

v

0.

Thus R, is an increasing function of r. Moreover R, = (1+ Ar)/(1+ )
implies

dR, _ _(1—4)

0
dr a+ry <

and so R, is a decreasing function of ». Thus the equation B,— R, =0
has at the most one root in (0, 1]. The inequality B, — R, < 0 holds
if and only if

T(r) = AQ — 24)0* + AQA — T)r* + A —5)r -38=0.

Now T(0) =3>0 and T(1) = —2(1 + A) <0 and so R, — R, = 0 has
at least one root in (0, 1]. Let the unique root of the equation T'(r) =0
be r,. Thus the condition R, < R, holds for some r if and only if
r<r,. Thus R, < R, holds at » = ¢ if and only if 0 < r,. Now
P(r) — B satisfies P(0) — @>0. We show P(r,) =0. This will
imply that P,(r,) — 8 < 0 and, in particular, that o, the least positive
root of the equation P,(r) — @ = 0, will satisfy ¢ £ r,. Now a calcu-
lation shows that

Pr) = r’2A'— A) +rdA—-2)+1
1+ @@+ A)yr + A

Therefore P(r) £ 0 if r exceeds the least positive root of the equation

P24 — A) + x(4A — 2) +1 =0.
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ie., P(r) £0 if »r = (1 — t)/s where

s=—dzo, 1-(L1ZA)

1-2A
So P(r)=<0 if r,= @ —t¢))s. But r,=(@1 —¢)/s if and only if

T((1 — t)/s) = 0, since T(r) = 0 has a unique root in (0, 1] and 7'(0) > 0.
Changing A to —s, we get the fact that T(r) = 0 if and only if,

—3(1 + 28)s + (2s + T)sr* — (4s + 5)r +3=0.

Substituting r = (1 — ¢)/s and using elementary calculations, the condi-
tion reduces to

—4sl — ) —4s(l —s)— 2s+1)<0.

Since A=a +7—1=<0 and s = — A4, the last inequality is trivially
true. Further, the bounds obtained in Theorem 2 are sharp and so
the radius o obtained above is also sharp for the family @ under
consideration and this completes the proof of Theorem 3.

REMARKS. It should be noted that we have not used the full
force of Lemma 1, in the proof of Theorem 3. Other conditions on

F(z) and g(z) such as

-1
+1] <« 0<a=sl,

| 2Fie) _ 4)|2Fi@)

I Fy(2) F\(z)
or
2F(2) _ > _L
) al<a «a 5
or
Fe IS¢ 0sx=h

where Fi(z) = (9(z)F(2))"* F.(0) = 1, could be considered instead of
F\(2) being in S*((a + 7)/2) as in Theorem 3. Problems with these
conditions can be solved similarly by choice of suitable values for
A, B, Cin Lemma 1. Also the case a + 7 > 1 left out in the theorem
can be treated using the above estimates. Details relating to this
case which involve difficult calculations will be published on another
occasion. Further, from Theorem 3, it follows that if @ + 7 =1, the
radius of g-starlikeness of the family @ is given by ¢ = (1 —8)/(2 + B)
and this is a slight generalization of [3, Corollary 2 to Theorem 1].

The author would like to thank Professor K. S. Padmanabhan for
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helpful discussions. He also thanks a referee who suggested a better
presentation of the material.

REFERENCES

1. S. D. Bernardi, The radius of univalence of certain analytic functions, Proc. Amer.
Math. Soc., 24 (1970), 312-318.

2. R.J. Libera, Some classes of regular univalent functions, Proc. Amer, Math. Soc.,
16 (1965), 755-758.

3. R. J. Libera and A. E. Livingston, On the univalence of some classes of regular
Sfunctions, Proc. Amer. Math, Soc., 30 (1971), 322-336.

4. A.E, Livingston, On the radius of univalence of certain analytic functions, Proc.
Amer. Math. Soc., 17 (1966). 352-357.

5. R. V. Nikolaéva and L. G. Repnini, A certain generalization of theorems due to
Livingston, Ukrain, Mat. Z., 24 (1972), 268-273 (Russian).

6. K. S. Padmanabhan, On the radius of univalence of certain classes of analytic func-
tions, J. London. Math. Soc., (2) 1 (1969), 225-231.

7. V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of
Sunctions, J. Math. Soc. Japan, 23 (1971), 323-339.

Received April 14, 1975 and in revised form July 22, 1975.

THE RAMANUJAN INSTITUTE
UNIVERSITY OF MADRAS
MADRAS-600 005, INDIA.



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 61, No. 1 November, 1975

Jifi Addmek, V. Koubek and Véra Trnkova, Sums of Boolean spaces represent every

GTOUD . o ettt e e e e e e e 1
Richard Neal Ball, Full convex [-subgroups and the existence of a*-closures of

lattice ordered groUPS . ... 7
Joseph Becker, Normal hypersurfaces ................ocouiiiiiiiiiiinininn. 17
Gerald A. Beer, Starshaped sets and the Hausdorff metric ..................... ... 21
Dennis Dale Berkey and Alan Cecil Lazer, Linear differential systems with

measurable COeffiCients . . ... ... e 29
Harald Boehme, Gldttungen von Abbildungen 3-dimensionaler

MannigfaltigReiten . . ... ... e 45
Stephen LaVern Campbell, Linear operators for which T*T and T + T*

COMIMUEE . . . ottt et e e e e e e e e e e e et 53
H. P. Dikshit and Arun Kumar, Absolute summability of Fourier series with

JUCTIOTS . oo 59
Andrew George Earnest and John Sollion Hsia, Spinor norms of local integral

FOLAtiONS. I1 ... ... ..o e 71
Erik Maurice Ellentuck, Semigroups, Horn sentences and isolic structures . ........ 87
Ingrid Fotino, Generalized convolution ring of arithmetic functions................ 103
Michael Randy Gabel, Lower bounds on the stable range of polynomial rings . . .. .. 117

Fergus John Gaines, Kato-Taussky-Wielandt commutator relations and
characteristic CUIVeS . .........c.coueuiiiiiiininenn..

Theodore William Gamelin, The polynomial hulls of certain su
R. J. Gazik and Darrell Conley Kent, Coarse uniform convergen
Paul R. Goodey, A note on starshaped sets...................
Eloise A. Hamann, On power-invariance .....................
M. Jayachandran and M. Rajagopalan, Scattered compactificati
V. Karunakaran, Certain classes of regular univalent functions .
John Cronan Kieffer, A ratio limit theorem for a strongly subad,

a locally compact amenable group......................
Siu Kwong Lo and Harald G. Niederreiter, Banach-Buck measu

uniform distribution in rings of algebraic integers. .......
Harold W. Martin, Contractibility of topological spaces onto me
Harold W. Martin, Local connectedness in developable spaces .
A. Meir and John W. Moon, Relations between packing and cov

Hiroshi Mori, Notes on stable currents .......................
Donald J. Newman and I. J. Schoenberg, Splines and the logarit
M. Ann Piech, Locality of the number of particles operator . . ..
Fred Richman, The constructive theory of KT-modules . . ... ..
Gerard Sierksma, Carathéodory and Helly-numbers of

CONVEX-product-StrUCTUTES .. ..o vv i

Raymond Earl Smithson, Subcontinuity for multifunctions. . ...
Gary Roy Spoar, Differentiability conditions and bounds on sin,
Rosario Strano, Azumaya algebras over Hensel rings ... .......


http://dx.doi.org/10.2140/pjm.1975.61.1
http://dx.doi.org/10.2140/pjm.1975.61.1
http://dx.doi.org/10.2140/pjm.1975.61.7
http://dx.doi.org/10.2140/pjm.1975.61.7
http://dx.doi.org/10.2140/pjm.1975.61.17
http://dx.doi.org/10.2140/pjm.1975.61.21
http://dx.doi.org/10.2140/pjm.1975.61.29
http://dx.doi.org/10.2140/pjm.1975.61.29
http://dx.doi.org/10.2140/pjm.1975.61.45
http://dx.doi.org/10.2140/pjm.1975.61.45
http://dx.doi.org/10.2140/pjm.1975.61.53
http://dx.doi.org/10.2140/pjm.1975.61.53
http://dx.doi.org/10.2140/pjm.1975.61.59
http://dx.doi.org/10.2140/pjm.1975.61.59
http://dx.doi.org/10.2140/pjm.1975.61.71
http://dx.doi.org/10.2140/pjm.1975.61.71
http://dx.doi.org/10.2140/pjm.1975.61.87
http://dx.doi.org/10.2140/pjm.1975.61.103
http://dx.doi.org/10.2140/pjm.1975.61.117
http://dx.doi.org/10.2140/pjm.1975.61.121
http://dx.doi.org/10.2140/pjm.1975.61.121
http://dx.doi.org/10.2140/pjm.1975.61.129
http://dx.doi.org/10.2140/pjm.1975.61.143
http://dx.doi.org/10.2140/pjm.1975.61.151
http://dx.doi.org/10.2140/pjm.1975.61.153
http://dx.doi.org/10.2140/pjm.1975.61.161
http://dx.doi.org/10.2140/pjm.1975.61.183
http://dx.doi.org/10.2140/pjm.1975.61.183
http://dx.doi.org/10.2140/pjm.1975.61.191
http://dx.doi.org/10.2140/pjm.1975.61.191
http://dx.doi.org/10.2140/pjm.1975.61.209
http://dx.doi.org/10.2140/pjm.1975.61.219
http://dx.doi.org/10.2140/pjm.1975.61.225
http://dx.doi.org/10.2140/pjm.1975.61.225
http://dx.doi.org/10.2140/pjm.1975.61.235
http://dx.doi.org/10.2140/pjm.1975.61.241
http://dx.doi.org/10.2140/pjm.1975.61.259
http://dx.doi.org/10.2140/pjm.1975.61.263
http://dx.doi.org/10.2140/pjm.1975.61.275
http://dx.doi.org/10.2140/pjm.1975.61.275
http://dx.doi.org/10.2140/pjm.1975.61.283
http://dx.doi.org/10.2140/pjm.1975.61.289
http://dx.doi.org/10.2140/pjm.1975.61.295

	
	
	

