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OF ALGEBRAIC INTEGERS

SlU KWONG LO AND H. NlEDERREITER

The theory of uniform distribution of sequences of algebraic
integers in a fixed algebraic number field K, as initiated by
Kuipers, Niederreiter, and Shiue, is developed from a measure-
theoretic viewpoint. After establishing some general facts
in § 2, in particular, the analogy between uniform distribution
of sequences of algebraic integers in K and of sequences of
lattice points, a method of enumerating all algebraic integers
in K into a uniformly distributed sequence is discussed in § 3.
This enumeration method is useful for the construction of
other uniformly distributed sequences as well and plays a role
in the density theory. In § 4, a so-called Banach-Buck measure
is defined on the ring of all algebraic integers in K. Various
relations between this measure and the property of uniform
distribution are exhibited. Based on Buck's general concept
of density, the notions of relative density and of density of
sets of algebraic integers in K are introduced in the final
section. Connections among the concepts of uniform distri-
bution, measurability, and relative density of sequences of
algebraic integers in K are established.

1* Introduction* The definition of uniform distribution of se-
quences of algebraic integers in a fixed algebraic number field K
was introduced by Kuipers, Niederreiter, and Shiue [5]. In the
present paper, we shall develop the theory from a measure-theoretic
viewpoint.

After establishing some general facts in § 2, in particular, the
analogy between uniform distribution of sequences of algebraic integers
in K and of sequences of lattice points, we discuss in § 3 a method
of enumerating all algebraic integers in K into a uniformly distributed
sequence. This enumeration method is useful for the construction of
other uniformly distributed sequences and plays a role in the density
theory. In § 4, we define a so-called Banach-Buck measure on the
ring of all algebraic integers in K. Various relations between this
measure and the property of uniform distribution are exhibited. Based
on Buck's general concept of density, we introduce in the final section
the ideas of relative density and of density of sets of algebraic
integers in K. We establish connections among the concepts of
uniform distribution, measurability, and relative density of sequences
of algebraic integers in K. A variety of interesting problems emerge
in this study.
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2* Generalities* Let K be a given algebraic number field of
degree [K: Q] = k over the rationale, and let 0 be the ring of all
algebraic integers in K. Let I c 0 be a nontrivial integral ideal with
norm <yKl. If J^"= (an), n = 1, 2, , is a sequence of elements in
0, then A(iV, α + I, J*f) will denote the number of n, 1 ̂  n ^ N,
such that αΛ = a (mod I). The following two definitions can be found
in [5].

DEFINITION 2.1. Let J c O be a nontrivial integral ideal. Then
the sequence S/ is uniformly distributed modulo / (u.d. mod I) if

for every coset α + I of /.

DEFINITION 2.2. The sequence J ^ is uniformly distributed in 0
(u.d. in 0) if S/ is u.d. mod I for every nontrivial integral ideal
J c O .

LEMMA 2.3. Let J £ I be nontrivial integral ideals, and let Sf
be a sequence of algebraic integers in 0. Then, if Szf is u.d. mod/,
it is also u.d. mod /.

Proof. This follows immediately from the identity

A(N, a + I,j*) = ΣA(N, β + J, Jf) ,

where the sum is taken over all distinct cosets β+J with β = a(moά I).

THEOREM 2.4. The sequence Szf of algebraic integers in 0 is u.d.
in 0 if and only if Sf is u.d. modulo the principal ideal mO for
every rational integer m ;> 2.

Proof. The necessity is trivial. To prove sufficiency, we choose
a nontrivial integral ideal IaO. Since 0/1 is an additive group of
order *sf~If we have the coset identity (<yf^I)(l + /) = /, and so

Q I. The rest follows from Lemma 2.3.

If an integral basis W = {ωu •• ,ωfc} of K over Q is chosen,
then for every aeO we have a = Σ*=i%iωi with xteZ for 1 ̂  i ^ k.
The identification of a with the lattice point (xu **,xk) provides a
group isomorphism between 0 and Zk. Thus, all the subsequent
results that depend only on the set-theoretic or additive structure
of 0 have an analogue in Zk, and vice versa. In the sequel, we shall
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sometimes identify a sequence in 0 with one in Zk, and vice versa.

An equivalent form of the following definition can be found in

[6].

DEFINITION 2.5. Let X = (xn), n = 1, 2, • ••, be a sequence of
lattice points in Zk. Then X is called u.d. mod m Z φ 0 mZ,
m > 2 a rational integer, if

lim 1 A(N, (jl9 , jk) + (mZ0 • 0 mZ\ X) = ±

for every (j19 •••, jk)eZk, the counting function having the obvious
meaning. Furthermore, if X is u.d. mod mZφ 0 mZ for every
m ^ 2, then X is called u.d. in Zk.

If one identifies the integral ideal mO of 0 with the subgroup
mZφ ••• 0 m Z of Zfc, then in view of Theorem 2.4 and Definition
2.5, the uniform distribution of a sequence in 0 is equivalent to the
uniform distribution of the corresponding sequence in Zk.

We shall write exp (£) = e2πit for any real number t. Further-
more, if a = (&!, , ak) and 6 = (6X, , bk) are two vectors of the
euclidean space Rk, then α δ = Σ*= 1α<6< will denote their standard
inner product. The following is well-known (see [10] for the case
k = 1 and [6] for the general case).

THEOREM 2.6 (Weyl criterion). A sequence X= (xn), n = l,2,
in Zk is u.d. mod mZφ 0 mZ if and only if

lim A Σ exp ( ( A -- ,

/or αZΪ ίfeosβ (j\, , ifc) G Zfc /or which not all of the coordinates are
divisible by m.

3. The cube method. We describe a method of obtaining a
u.d. sequence in Zk out of k sequences that are u.d. in Z. Suppose
we are given k sequences Xlf - , Xk of rational integers with Xt = (xni),
n — 1, 2, , for 1 <Ξ i <: k. Then the lattice point (α?Λlfl, , xn]c,k) is
said to lie in the mth cube if m a x M ι . . α % = m. We now enumerate
all elements of the form (xni,u , xnjB,k) by starting with the element
in the first cube, then enumerating all the elements in the second
cube in an arbitrary order, then all the elements in the third cube
in an arbitrary order, and so on. Then a sequence in Zk resulting
from this construction is called a sequence arising from Xu ---,Xk

by the cube method.

T H E O R E M 3 . 1 . A sequence Y= (yn), n = 1, 2, •••, arising from
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the sequences Xl9 -- ,Xk by the cube method is u.d. in Zk if and
only if Xt is u.d. in Z for i = 1, , k.

Proof. Suppose first that each Xt = (xni)9 n = 1, 2, , is u.d.
in Z. Choose a rational integer m ^ 2 and (ju •••, jk)eZh, not all
of the ji being divisible by m. Then,

lim -L £ exp ((L, ..., h.). y\ = lim -L Π ( Σ exp (^ a;.,))

by taking k = 1 in Theorem 2.6. By elementary estimates, this limit
relation implies

lim — Σ

so that Y is u.d. in Zk by Theorem 2.6 and Definition 2.5.
Now assume that Y is u.d. in Zk. Without loss of generality,

we shall prove that Xλ is u.d. in Z. Let m ^ 2 be a rational integer,
and let 0 < j < m. Then,

— V p x n ( 3 Ύ i — ί >• P Y Π ( 3 Ύ M TT I —- V PXΪ) (— r

1 ^ /Y i
Nk n=i \\m'

Letting N—* oo, we have

by Theorem 2.6, and the desired conclusion follows from the Weyl
criterion for u.d. in Z.

The cube method can be used to find an enumeration (without
repetition) of all lattice points in Zk into a u.d. sequence in Zk (or,
equivalently, an enumeration, without repetition, of all elements of
0 into a u.d. sequence in 0).

DEFINITION 3.2. Let each of the sequences Xίf , Xk be identical
to the sequence 0,1, — 1, 2, —2, . Then a sequence R = ( r j , n =
1, 2, •••, arising from the sequences Xl9 •••, Xk by the cube method
is called a sequence of all lattice points in Zk enumerated by the
cube method.
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THEOREM 3.3, A sequence of all lattice points in Zk enumerated

by the cube method is u.d. in Zk.

Proof. This follows immediately from Theorem 3.1 and the fact

t h a t the sequence 0 , 1 , — 1 , 2, — 2, ••• is u.d. in Z.

D E F I N I T I O N 3.4. A lattice point x = (xlf -- ,xk)eZk is called a

positive lattice point if xt ^ 1 for 1 <; i <; k.

D E F I N I T I O N 3.5. Let each of the sequences Xu •••, Xk be identi-

cal to the sequence 1,2,3, •••. Then a sequence R+ = ( r ί ) , n —

1, 2, •••, arising from the sequences X19 •••, Xk by the cube method

is called a sequence of all positive lattice points in Zk enumerated by

the cube method.

THEOREM 3.6. A sequence of all positive lattice points in Zk

enumerated by the cube method is u.d. in Zk.

Proof. This follows immediately from Theorem 3.1 and the fact
that the sequence 1, 2, 3, is u.d. in Z.

A variety of other interesting classes of u.d. sequences in Zk

can be found by the cube method. We mention a typical example.
As usual, [t] denotes the integral part of a real number t.

THEOREM 3.7. Let R+ = (ri), n = 1, 2, , be a sequence of all

positive lattice points in Zk enumerated by the cube method, with

ri — (χm, , %*k) for n ^ 1> and suppose au ••-,«& are k real

numbers. Then the sequence X = (xn), n = 1, 2, , with xn = ([a^^],

••-Λak%nk\) for n ^ l , is u.d. in Zk if and only if each at is

irrational or the reciprocal of a nonzero rational integer.

Proof. For 1 <; i <̂  k, let Xt be the sequence Xt = flwαj),
n = 1, 2, . It is obvious that X is a sequence arising from the
sequences Xl9 •••, Xk by the cube method. The result follows then
from Theorem 3.1 and a result of Niven [8] (see also [4, p. 308]).

4* The Banach-Buck measure* In this section, we shall define
a finitely additive measure on 0, the ring of all algebraic integers
in a fixed algebraic number field K. This idea was first used by
Buck [1] in his discussion of density of sets of rational integers.
Later on, M. and S. Uchiyama [9] applied Buck's idea to the theory
of uniform distribution of rational integers. See also [3] and [4,
Ch. 5, § 1].
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If / is an integral ideal, then the ring O of all algebraic integers
of K is partitioned into cosets of /. Let S3 consist of the empty set
and of all finite unions of cosets of nonzero ideals of 0. It is easily-
seen that S3 is an algebra.

DEFINITION 4.1. The set function μ: S31—• R+ (nonnegative real
numbers) is defined by μ(0) = 0, μ{E) = 1/^VI if EeSS is a coset
of the nonzero integral ideal I, and μ{Eι U E2) = μ{E^ + μ(E2) if
JBi, E2 6 S3 with E1 Π E2 = 0 .

One checks in a straightforward manner that μ is well defined.
Obviously, μ is a finitely additive normed measure on S3. The proof
of the following simple characterization of u.d. in 0 can be left to
the reader.

THEOREM 4.2. Let Sz? = (an), w = 1, 2, •••, be a sequence of
elements of 0. Then J^ is u.d. in 0 if and only if

Km -ί Σ XEM = μ(E) for every Ee S3 ,

where XE denotes the characteristic function of the set E.

Let μ* be the outer measure associated with μ. In detail, we
define

μ*(F) = inf

for every subset F of 0. The set functions μ* and j« coincide on S3,

DEFINITION 4.3. Let 33 be the collection of all subsets F of O
such that, for any subset ΰ of O, we have

μ*(D) = μ*(D Π F) + /̂ *(Z) n -F;) ,

where ί7' is the complement of F with respect to 0. The elements
of S3 are called measurable sets.

From general measure theory, we know that S3 is an algebra
containing S3 with μ* a finitely additive normed measure on it. The
following statements are equivalent:

(1) FeS;

(2) μ*(F) + μ*(F') = 1;
( 3) for any ε > 0, there exist Eίf E2 e S3 such that

and μ{E\E2) < ε;
( 4) μ*(F) = μ*(F), where μ*(F) = sup {μ(#): F^
For i^e S3, we shall write ^(ί7) instead of μ*(F). The measure
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μ on S is called the Banach-Buck measure. The following result
shows that we could have included the finite subsets of 0 in the
original algebra 33, as was done in [1].

THEOREM 4.4. If F is a finite subset of 0, then Fe^d and
μ(F) = 0.

Proof. Without loss of generality, we may assume that F
consists of one algebraic integer only, say F — {a}. Let I = mO,
where m is a positive rational integer. Then <yV*I = mk. Obviously,
Faa + I, and so μ*(F) <; μ(a + I) = m~k. Letting m—> oo, we
obtain μ*(F) = 0, hence μ*(F) = μ*(F) = 0.

THEOREM 4.5. A set A Q 0 is of outer measure 1 if and only
if A intersects every coset of every nonzero integral ideal.

Proof. Suppose there is a coset E of a nonzero integral ideal
such that Af]E= 0 . Then A £ E\ and so μ*(A) ^ μ(E') = 1 -
μ(E) < 1. Now assume that μ*(A) < 1. Then there is a set Ee^d
such that A Q E and μ(2£) < 1. Let I be a nonzero integral ideal
such that E = Uϊ=i (α* + ^) Since ^(.K) < 1, there must be a coset
β + I such that 2? n CS + I) = 0 , and so A Π (β + I) = 0 .

EXAMPLE 4.6. The set C of all composite algebraic integers of 0
has outer measure 1. Because of Theorem 4.5, we need only prove that
CΠ (oc+I) Φ 0 for any coset a + 1 of I, where / is an arbitrary nonzero
integral ideal. Without loss of generality, we may assume a Φ 0.
Choose a composite rational integer m satisfying m = 1 (mod ^VΊ)9

for instance, m = {^ΓI + I)2. Then ma = a (mod /), ma Φ 0, mα is
not a prime in O (since m can already be decomposed nontrivially),
and ma is not a unit (otherwise, m were a unit). In other words,
ma G C Π (a + /).

The following two theorems were first observed by M. and S.
Uchiyama [9] in the case of rational integers. Later on, Dijksma
and Meijer [3] corrected an error in [9]. Our proof is essentially
the same as the corrected version of the argument in [9]. For the
sake of completeness, we still give the details.

THEOREM 4.7. If s*f— {an), n - l f 2 9 . . - , i s a u.d. sequence in

O, then

lim A £ χF(an) = μ(F) for every F e » .
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Proof. Let Ee%$ such that F £ E. Then,

for all N ̂  1, and so

N -IN

lim sup i

by Theorem 4.2. It follows that
n = 1

Similarly, we can show that

Urn in f^
jy

Since f e S , we have μ*{F) = μ*{F) = μ(F)9 and the proof is com-
plete.

THEOREM 4.8. If J ^ = (an)9 n = 1,2, , is a u.d. sequence in
0, έfcen the set A of elements of Jάf satisfies μ*{A) — 1. Conversely,
let & — (7%), n — 1, 2, , 6e α sequence of all algebraic integers in
0 enumerated without repetition in such a way that it is u.d. in
0. If szf = (an), n — 1, 2, , is a subsequence of ^ , and if the set
A of elements of Ssf satisfies A e S and μ(A) = 1, then Szf is u.d.
in 0.

Proof. To prove the first assertion, let E 6 33 such that AζZ E.
Then,

i1 - lim λ Σ ZΛ«.) ^ urn i Σ Z*(«.)

by Theorem 4.2. Therefore, μ*(A) = 1.
The second assertion is shown as follows. Denote by J^(m) the

number of elements in J*f which precede Ίm in the sequence ^ or
are equal to Ύw. Then,

lim ̂ ^ = lim -ί Σ U^n)

by Theorem 4.7. For given N}£l, there exists an m with α^ = 7W

Then, for every EeS8 we have
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1 N 1 m m 1 m

T7 Σ XEVXV) — — Σ X^ίlΛlO^) — "~Γ77 Γ ' Σ XEΠAUn) 9

and so

) = lim — Σ Z*nΛ? ) = M# Π
7ft

But /«(#) = μ(Ef] A) + μ(EΓ\ A') and μ(EΓ) A') ^ ju(il') = 1 - μ(A) = 0,
so that μ(E Π A) = /<(£f). Thus,

and J ^ is u.d. in 0 by Theorem 4.2.

REMARK. We can even prove that a set A g 0 satisfies μ*(A) = 1
if and only if its elements can be arranged into a u.d. sequence in
0. The sufficiency follows, of course, from Theorem 4.8. In the
proof of the necessity, techniques of a different type are involved.
The reader is referred to [7].

COROLLARY 4.9. If ^ is a sequence of all algebraic integers in 0
which is u.d. in 0, and if Jάf is a subsequence of ^ such that the
set A of elements of J^f is measurable and intersects every coset of
every nonzero integral ideal, then S$f is u.d. in 0.

Proof. This is a direct consequence of Theorems 4.5 and 4.8.

EXAMPLE 4.10. There is a sequence s*f satisfying the condition
in Corollary 4.9, but still differing from ^ by infinitely many terms.
Let [K: Q] = k ^ 2 and let & — (pn), n = 1, 2, , be a sequence of all
algebraic integers in 0 enumerated by the cube method with respect
to a given integral basis (see Definition 3.2 and the remarks following
Theorem 2.4). Let Jzf be the subsequence consisting of all points of
&} except those on the axes. Then, obviously, j y differs from &
by infinitely many terms. We shall show that stf satisfies the con-
ditions in Corollary 4.9.

Obviously, A Π {a + mO) Φ 0 for any nonzero rational integer
m and any aeO, so that A intersects any coset of any nonzero
integral ideal. To show that A is measurable, consider the principal
ideal mO for any m ^ 2 , w e Z . There are mk — k(m — 1) — 1 cosets
contained completely in A. The measure of their union is given by
(mk — km + k — l)/mk, so that

μ*(A) ^ 1 - -A- + ̂ =τi
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Letting m—• oo, we get μ*(A) ^ 1. So, μ*(A) = 1 = μ*(A), and A
is measurable.

If k — 1, one may take for ^ the sequence 0,1, —1, 2, — 2,
and for J ^ the subsequence consisting of all positive or negative
composite rational integers.

COROLLARY 4.11. Let ^ be as in Corollary 4.9, and suppose
*$/ is a subsequence of ^ that is u.d. in 0. If *$/', the complement
sequence with respect to &, is also u.d. in 0, then the set A of
elements of Jzf is not measurable.

Proof. By the first part of Theorem 4.8, we know that μ*{A) — 1
and μ*(A') = 1. If A were measurable, we would have

μ*(A) + μ*(A') = 1 ,

a contradiction.

COROLLARY 4.12. Let <& be as in Corollary 4.9. Suppose J%f
is a subsequence of ^, and let A be the set of elements of Stf. If
A is measurable and μ(A) = 0, then J&" is u.d. in 0.

Proof. Since A is measurable, so is A'. Furthermore, μ(A') —
1 — μ(A) = 1. Then, by the second part of Theorem 4.8, Ssf' is
u.d. in O.

5* Density. The following notion of density can be thought
of as a special case of Buck's general concept of density in [2].
Suppose W is an integral basis for K over Q, and let & = (pn),
n = 1, 2, , be a sequence of all algebraic integers in 0 enumerated
by the cube method with respect to W (see Definition 3.2 and the
remarks following Theorem 2.4).

DEFINITION 5.1. If A £ 0, we define

B(N, A) = BW(N, A) = Σ χA(ρn) ,
n — l

where χA is the characteristic function of A. If the limit DW(A) —
lim^oo B(N, A)/N exists, then DW(A) is called the relative density of
A with respect to W.

REMARKS. ( i ) DW(A) is independent of the exact arrangement
of elements in ^?, since
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(ii) If Fe S3, then ZV(F) exists and DW(F) = ^(ί 7). This follows
from Theorem 4.7 and the fact that & is u.d. in 0.

(iii) Denote by %w the set of all subsets Toΐ 0 for which DW(T)
exists. Then we have 93c33.£ 35 .̂

(iv) If Te%5w, then μ*(T) ^ DW(T) ^ μ*(T). To prove this,
choose Eet8 such that TQE. Then we have

= lim *ULΏ. * lim

and so ZV(T) ^ j"*(T)._ Similarly, one proves that
(v) For any f e S , the relative density is independent of the

integral basis chosen. This is a direct consequence of Remark (ii) and
the fact that μ(F) is independent of the integral basis chosen.

The following questions arise naturally. Let A e $8W; if another
integral basis V is chosen, is it necessary that 4 G S F in general?
If it were, is it true that DW(A) = DV(A)Ί The first question is still
open. Our conjecture is that the answer is negative. As to the
second question, the answer turns out to be negative.

EXAMPLE 5.2. Let k ^ 2, and let W= {ωu ••, ωk} be a given
integral basis. We shall show that for every s > 0 there exists a
set AQ 0 and an integral basis V such that DV(A) = 2~k, but
DW(A) < ε. For a positive rational integer c, consider the integral
basis V = {vl9 , vk} with vx = ω19 v2 = cω1 + ω2, and vi = ft)* for
3 ^ i ^ k. Let 4 = {Σti ^ ^ eOiy^O, yi > 0 for 2 ^ i ^ &}.
Then we have, of course, DV{A) = 2~fc. Furthermore, we get
Bw((2t + ΐ)\ A) = tk~2 Σ ί =i [i/c] for every rational integer t ^ 1. By
trivial estimates, we obtain

_ fc_2 t(t

so that

- lim -

This can be made smaller than a given ε > 0 by choosing c sufficiently
large.

The following theorem is concerned with the relationship between
relative densities with respect to different integral bases.

T H E O R E M 5 . 3 . Let W= {ωu ••-, ωk} and V= {vl9 •••, vk} be two
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integral bases. Then there exist two positive constants ct and c2,

depending on W and V only, such that for all A e 58W,

lim inf
N-+00

^ lim sup Bγ(N> A ) ^ c2Dw{A) .
JV-»oo j\Γ

Proof. Let t be the smallest positive integer such that the set
{Σ?=i %iωi Xi£ Z, \Xi\ <^t for 1 <: i <̂  k} contains the set

, \vΛ ^ for

Then for every N^ 1, the set
ΐ ^ &} contains the set {Σ<*
follows that

Nt for 1

and so

BV((2N + l)fe, A) (2Nt + l)fe

(2N + l)fe ~ (2N + ΐ)k

• Z, I yt I £ N for 1 ^ i £Ξ A;}. It

, A) ^ Bw((2Nt + 1)", A) ,

L)* BW((2M + l) fe, A)

(2Nt

Therefore,

The right-hand side of the inequality follows with c2 = tk.
The left-hand side can be proved in a similar way. We choose

the smallest positive integer s such that the set {Σ*=i 2/Λ: Vie ^>
I Vi I ̂  s for 1 ^ ί ^ k) contains the set {Σ*=i χiωi: χ i e %> I χt I = 1 f ° r

1 ^ i ^ A?}. Then for every N ^ 1, the set (ΣίU l/<^: VteZ9\Vt\£N8
for 1 ^ i ^ A} contains the set {Σ*«i ^ ί^i : α̂ i e Z, | ̂ i | ^ iV for 1 ^
i ^ A}. It follows that

BW((2N + l)fc, A) ^

Slim inf

fc, A)

and so

Thus we have the desired result with ct = s~k.

REMARK. The values of t and s in the proof of the preceding
theorem can be determined as follows. Since W is an integral basis,
we have

for 1 <; i <̂  k, with ati e Z.
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Every "vertex" of the "unit cube" {Σ?U VM: Vt e Z, \ yt | ^ 1 for 1 ^
i ^ k} is of the form Σ?=iδA> where e, = 1 or —1. However,

Therefore, t = maxi==1,...,fc Σί=i I α*i l By interchanging the roles of
TF and V, the value of s can be found in the same way.

COROLLARY 5.4. If DW(A) = 0 or 1, £fcew DF(A) = 0 or 1, respec-
tively.

Proof. If ZV(A) = 0, then DV{A) = 0 by Theorem 5.3. If
ZV(A) = 1, then D^(A') = 0, and so Dv(Ar) = 0, which implies
DV(A) = 1.

If the relative density of a given set A £ O is independent of
the integral basis chosen, then we simply call it the density of A
and denote it by D(A). Let 35 be the collection of all A Q 0 such
that D(A) exists.

We have shown that S3 £ 35 and, if A Q 0 with relative density
0 or 1, then Ae^&. The following question arises: is it necessary,
in general, that a set of density 0 or 1 be a measurable set? We
shall answer this question by giving the following example.

EXAMPLE 5.5. There exists a set A Q 0 with D(A) = 0 such that
A is not measurable. Enumerate all distinct cosets of all nonzero
ideals of 0 into a denumerable sequence (En), n = 1, 2, ••••. Let
gg = (ρn)f n = 1, 2, , be a sequence of all algebraic integers in 0
enumerated by the cube method with respect to an integral basis W.
We shall use the notation a ;> β if a is equal to or after β in the
sequence ,^?. Let A = {al9 a2j •} be constructed inductively as
follows: choose axe E^ then choose a2e E2 with a2 Φ ax and a2 ^ p4;
in general, choose an e En with an Φ at for i < n and an ^ /^2. This
construction is possible since each En is infinite. Note that BW{N2, A)^N
for N ϊ> 1, so that D(A) = 0. We claim that A is not measurable.
Indeed, it follows from the above construction that A intersects
every coset of every nonzero integral ideal, and so μ*(A) = 1 by
Theorem 4.5. On the other hand, μ*(A) ^ D(A) = 0 by Remark (iv)
following Definition 5.1, hence A is not measurable.

The following question is also of interest: let 4 e S , D(A) Φ 0, 1;
is 4 e S in general? The answer turns out to be negative.

EXAMPLE 5.6. For a fixed integral basis W= {ωu -. , ωk}, consider
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the set A = {Σ?=i χiωi eθ:xί> 0}. Let V= {vl9 , vk) be any integral
basis. Then, for N ^ 1 we have

(2N + l)k = 2BV((2N + l)k, A) + M(N) ,

where M(N) is the number of a = Σ*=i 2/Λ with 12/, | g ΛΓ for
1 ^ i ^ k, such that the coefficient of o)1 in the representation
a = Σ?=i ^iωi is zero. Now

— Σ

so that AΓ(iV) = card {(^, . . . , yk) e Zk: Σ t i atxyt = 0, | ̂  | ^ JV for
1 ^ i ^ A}. But at least one of the an is nonzero, so that a trivial
upper bound for M(N) is (2N + I)*-1. It follows that

iri £ Br({2N + 1 ) l f A )

and so Z)7(A) = 1/2. Since V was arbitrary, we have D(A) = 1/2.
However, A is not measurable. To see this, we note first that A

intersects every coset of every nonzero integral ideal, so that μ*(A) = 1
by Theorem 4.5. On the other hand, A contains no coset completely,
and so μ*(A) = 0.

To sum up, we have established the following chain of inclusions:

95 c » c i s %w f

where W is any integral basis. The last inclusion is proper for
k > 1 (see Example 5.2), the other inclusions are proper in all cases
(see Theorem 4.4 and Example 5.5). One should observe that S3 is
not an algebra. This is well-known for k = 1 (see [1]). For k > 1,
we have constructed in Example 5.2 a finite intersection of "half-
spaces" (with respect to the integral basis V) that is not in 33.
However, each individual half-space is in 33 by the argument in
Example 5.6.

We discuss now some relations between density and uniform
distribution. We remark that relations of a different type between
density of sets of lattice points and uniform distribution mod 1 have
been found by Volkmann [11].

LEMMA 5.7. Let & = (pn), n — 1, 2, •••, be a sequence of all
algebraic integers in 0 enumerated by the cube method with respect
to a given integral basis W. Then the subsequence S^f = (<xn),
n = 1, 2, , of & is u.d. in 0 if and only if
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BW(N Af)E) =

for

where A is the set of elements of J^Γ

Proof. Suppose the condition is satisfied. For any am, there
exists an N such that am = pN. So

1 Σ 13) =

V, A)

for every j&eSS, hence J ^ is u.d. in 0 by Theorem 4.2.
For the converse, choose N^l and let m — BW(N, A). Then

Σ?=i X (̂̂ )̂ = ̂ (iV, A n £ ) for every S e S , and so

* W J " f > = Urn A £*.<«•)•-<•(*)•BW\JN, A)

THEOREM 5.8. Lβέ ̂  δβ α sequence of all algebraic integers in
0 enumerated by the cube method with respect to a given integral
basis, and let J^f be a subsequence of &. If the set A of elements
of J^f satisfies D(A) — 1, then Jzf is u.d. in 0.

Proof. Without loss of generality, assume A Φ 0. Let Ee 33 be
arbitrary. Then

B(N, A n E) _ B(N, E) N
B(N, A) N ' B(N, A)

B(N, A n E) B{N, A!) N
B(N, A') ' N B(N, A)

for sufficiently large N. Since

lim N = 1 , l i m ^ ^ O ,
ir-~> B(N, A) w-~ N

and 0 g B(N, A' Π E)/B(N, A') ^ 1, it follows that

, A)

and so J ^ is u.d. in 0 by Lemma 5.7.

EXAMPLE 5.9. The converse of the above theorem is not t rue.
In fact, there is a subsequence Szf = (<xn), n = 1, 2, •••, of ^? , a
sequence of all algebraic integers in 0 enumerated by the cube method
with respect to the integral basis W — {ωu ••-, ω j , such that S/ is
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u.d. in 0 but the set A of elements of Ssf satisfies D(A) = 0. Let
&+ = (pi), n = 1, 2, , be the subsequence of & consisting of the
positive lattice points (see Definition 3.4) in the identification of &
with a sequence of lattice points. Now put an = pi + n\ω1 for
n = 1, 2, . To show D(A) = 0, it suffices to prove DW(A) = 0. For
JVΞ>1, let q be the smallest positive integer with N<=ql- Then
B((2N + 1)*, A) ̂  £((2?! + 1)*, A) ̂  g + 1, and so

B((2N+ΐ)\A) g + 1
(2N+1Y - '

This implies already DW(A) = 0.
Let m ̂  2 be a rational integer. Then

aΛ = pi + n\ω1 = ̂ + (mod mO)

for all n^m. Thus, apart from finitely many initial terms, the
sequence Ssf is identical mod mO with the sequence ^ + . Since the
latter is u.d. in O by Theorem 3.6, Jzf is u.d. mod mO. By Theorem
2.4, we are done.

Obviously, the uniform distributivity of S/ is not sufficient to
guarantee D(A) — 1. We need a stronger hypothesis.

THEOREM 5.10. Let & be a sequence of all algebraic integers
in O enumerated by the cube method with respect to a given integral
basis. Furthermore, assume Sxf is a subsequence of & containing a
nonempty set Ee^d and Jϊf is u.d. in O. Then the set A of elements
of j y satisfies D(A) = 1.

Proof. We have

B(N, A)
N

B(N,
B(N,A

_ (B(N, i

V BUs

A)
HE)

r. A)

B(N, A n
N

)Yι. B(N,
) N

E)

E)

for all sufficiently large JV, so that l i m ^ B(N, A)IN={μ{E)Yιμ(E) = l
by Lemma 5.7 and Remark (ii) following Definition 5.1.

The following theorem was first proved by Niven [8] in the case
of rational integers. The proof of its generalization to the case of
algebraic integers goes through in exactly the same way, and so it
is omitted.

THEOREM 5.11. Let & be a sequence of all algebraic integers in



BANACH-BUCK MEASURE, DENSITY, AND UNIFORM DISTRIBUTION 207

0 enumerated by the cube method with respect to an integral basis
W. Let J^f be a subsequence of & with complement sequence Stf"
with respect to <%. If lim inf N^ BW(N, A')/N > 0 and ό>f is u.d.
in 0, then Szf' is u.d. in 0.

EXAMPLE 5.12. Let the sequence &+ be as in Example 5.9. Then
^ + is u.d. in 0 by Theorem 3.6 and has the following additional
properties: the set R+ of elements of &+ is not measurable and
satisfies DW(R+) — 2~k, and the complement sequence (&+)f is u.d. in
0 (by Theorem 5.11).

Let <%} be a sequence of all algebraic integers in 0 enumerated
by the cube method with respect to an integral basis W. Let A1 Q
A2 S be an increasing sequence of infinite subsets of 0 with
A — US=i At. For each i ^ 1, let J ^ be the subsequence of <% made
up of the elements of Aif and let the sequence Stf be constructed
from A in the same way. Suppose each Ĵ < is u.d. in 0. It is easily
seen that if l i m ^ Dw(Aτ) — 1, then Szf is again u.d. in 0 (use
Theorem 5.8). However, in general, S/ need not be u.d. in 0.

EXAMPLE 5.13. Let W — {ωu , ωk}f and let m ^ 2 be a rational
integer. Set

+ί

:όωόeO: -i^xj <0 for 1 <: j <* k[ f) mO
)

for i = 1, 2,

and let A, = I2+ U B, for i = 1, 2, . . . . It is trivial that A, Q A,
for i — 1, 2, •••, and that J^J is u.d. in 0 for every i. We shall
show that Szf is not u.d. mod mO. In fact, for any rational integer
ί Ξ> 1, we have A((ίm)* + ί&, mO, J ^ ) = 2tk, and so

A((ίm)& + tk,m0,
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