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THE CONSTRUCTIVE THEORY OF KT-MODULES

FRED RICHMAN

The theory of countable K T-modules is developed from a
constructive point of view. Of classical interest is a charac-
terization in terms of local properties.

1. Introduction. One of the high points in the theory of abelian
groups is the structure theory of countable abelian p-groups, often
referred to simply as Ulm’s theorem. Attempts to extend this theory
to more general classes of abelian groups culminated in the work of
Hill {4] who showed that the theory carried over to the class of
totally projective p-groups. The thrust here was to remove the
countability restriction. From a constructive point of view this does
not appear to be much of an advance, since the construction of
nontrivial totally projective groups is based upon the existence of
uncountable ordinals. On the other hand, Warfield’s notion of a
KT-module [5], which removes the torsion restriction, admits plenty
of nontrivial constructive examples, and thus invites the formation
of a constructive theory.

The constructive approach leads to an increased emphasis on local
properties. A local property of a module is a condition on its finitely
generated submodules. In the original Ulm theory the local property
demanded of the group was that it be torsion, while the only global
property invoked was countability. More recent treatments have
centered around purely global characterizations. This was motivated
by the necessity for some global property, coupled with a distaste
for the countability restriction. From a constructive point of view
all the significant examples are countable, and the finitistic approach
strongly suggests looking at finitely generated submodules. Thus
we are led to consider KT-modules in much the same spirit as the
original Ulm theory.

As in [2] we consider the height function to be an integral part
of the presentation of the module. So a “local object” is a finitely
generated module with a valuation induced by the height function of
the module in which it is imbedded. Our main task will be to study
such objects to determine when they can be submodules of K7T-
modules.

We shall be dealing with modules over a discrete valuation ring
R. All modules will be discrete in the sense that given any two
elements z and ¥, one can decide whether x =y or x = y. From a
constructive point of view this precludes, for example, taking R to
be the p-adic integers (unless the module is torsion), but allows R to
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be the rational p-adic integers or even the algebraic p-adic integers.
The constructive theory of ordinal numbers developed in [2] will be
adopted throughout.

2. Finitely related valuated modules. Let R be a discrete
valuation ring with prime ». An R-module A is valuated if it is
equipped with a function h: A— X\ U {0}, where \ is an ordinal, such
that

1. hpx > hx

2. h(x + y) = min (hx, hy)

3. hux = ha if % is a unit in R.

We employ the conventions that @ < o and « + 1= c. We say
that A is reduced if h™(e) = {0}. The function % is said to be a
height fumction if, in addition to satisfying properties 1 through 3,
it is surjective and

4. If hx > «, then we can find a ¥ such that hy = a and py = z.

An R-module is finitely related if it is a cokernel of a map
between finite rank free R-modules. Although it is a classical theorem
that, when R is a discrete valuation ring, every finitely generated
R-module is finitely related, this is not the case constructively, so
we must distinguish between these two concepts. For constructive
facts about finitely related modules see [3]. Consider the category
of finitely related valuated R-modules. A morphism is a homo-
morphism f: A— B such that for all # in A either Afr = co or
hx < hfx (as ordinals). We may as well assume that for each « in
% there is an x in A such that @ < hax # o. This A, which is an
invariant of the valuated module 4, is called the length of A and
may be written nA. Note that A@ B exists if and only if M4 VB
exists.

A rank 1 h-free module is a torsion free cyclic module such that
hpx = ha + 1 for each © #= 0. A rank 1 h-free module Re is of type
a if he = a. An h-free module of rank n is a direct sum of # rank
1 h-free modules. The number of different types of rank 1 A-free
modules in such a direct sum is the number of homogeneous components
of the h-free module. An h-free module is homogeneous if it has
only one homogeneous component. Note that if F is h-free of length
% and @e), then the rank of the homogeneous part of F' of type a
is the dimension of the vector space

F(a)
Fla + 1) + pF
where F(B) = {xe F: ha = B}, and so is an invariant.

If B is a valuated R-module and A is a submodule of B, then
A is nice in B if for each b in B there is an element in b + A of
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maximum height. Such an element is said to be A-proper. If A is
nice in B, then there is a natural valuation on B/A4, and the pro-
jection of B on B/A is the cokernel of the inclusion A £ B.

We need to establish some facts about submodules of finite rank
h-free modules, with particular emphasis on niceness. The reader
should keep in mind that if A is an ordinal, and @ and g8 are in ),
then we cannot necessarily determine whether 8 = a + n for some
positive integer .

LEMMA 1. Let B be a finite rank h-free module and A o finitely
generated submodule of B. Then we can construct a finite subset
e, +++, e, of a free basis of B, and nonzero generators a; = v, Q;;
for A such that

(1) he; < he;,, + t; for some nonnegative integer t;

(2) @€ Re;

(3) a;=01ifi>7j

(5) ho, < hay if © <k.

Proof. If A =0 choose m = 0 and we are done. Otherwise let
b, b, --- be a free basis for B and suppose that the elements a,=3;a;
form a set of generators for A, where a,;€ Bb; and 1 <7< n. By
reindexing we may assume that ke, < ha,; for all 7 and j. Suppose
ha,, = ha,, for some k> 1. We can relabel, if necessary, so that
hb, < kb, and redefine b, to be b, + rb, where r is chosen so that
srb, = a;, where a,, = sb,. With respect to the new basis b, b, ---
we have ha, < ha,,. We can repeat this for as many % as necessary
until ha, < ha,, for all k> 1. Replacing a, by @, — r,a, we may
assume that a; =0 for 2=<7=<n. Thus @¢,€>};:: Rb;for 27 < .

Set ¢, = b, and fix a,. By induction on » we can construct
€y ++°, 6y and @, ---, a, as desired. Note that we still have ka,, < ha,;
for all ¢ and j, and ha, < ha,, for k> 1. Thus we also have
he, < he, + t, for some nonnegative integer t,, because ha, < ha, and
Oy 7= 0.

COROLLARY 1. If B s h-free, and A is a finitely generated
submodule of B, them A is h-free.

Proof. Since A is finitely generated we may assume that B is
finite rank. It is readily seen that the generators constructed in
Lemma 1 form a free basis for A.

LEMMA 2. Same set up as Lemma 1. Let A(B) = {ac A: ha = 5}
where Be ABU{co}. If x = >, x; with x; € Re; and if, for L<j<m,
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we have x; = 0 or hx; < max (ha;; B), then x is A(B)-proper. More-
over for any be B we can find ac A(B) so that b + a has this form.

Proof. We may assume hx # oo. Let k be the least index so
that he = hx,. If hx, < B, then clearly x is A(B)-proper. We shall
show that if & > m or hx, < ha,,, then 2z is A-proper.

Consider x 4 @ where a = >, 7,0,. We wish to show h(x + a) < hz.
If hr.a, > hx for all ¢ we are done. Otherwise let ¢ be the least
index such that hr,a, < he. Note that ¢ = k. If ¢t >k, then

Wz + a) = h(Z(x +3 ria,.,->> < h(xk +3 mm) = hay = ha .

If t<k, then A+ a) = h(x, + Si<:7:0,). But hx, > hx and
hr.a,, > hx for 1 < t, while hr,a,, = hx. Thus h(x + a) < hz.

The “moreover” is easily proved by induction on m, noting that
if hx, = max (ha,, B), then we can find », so that z, = r,a,, and hence
x — 7, has first coordinate zero and »a, € A(B).

If we could take 8 = 0, then Lemma 2 would say directly that
A is nice. However we may not be able to lay our hands on the
least element of nB. Instead we can take 5 to be the minimum of
the heights of a free basis of B.

COROLLARY 2. If B is h-free, and A is a finitely generated
submodule of B, then there is a positive integer m, and an h-free
submodule F' of B such that p"B + A= F + A and each element of
F is A-proper.

Proof. Choose n so that hApte, = ha, for 1< ¢=<m and let
F=3,..Ro"e,. By Lemma 2 each element of F is A-proper, and
every element of p"B can be written as f — ¢ with a€ 4 and fe F.

Since Lemma 2 implies that A is nice in B we may consider
B/A as a valuated module in a natural way. Then Corollary 2 may
be interpreted in B/A.

COROLLARY 3. Let B be h-free and A a finitely generated sub-
module of B. Then p™(B/A) is h-free for some positive integer n.

We will need the following relative version of Lemma 2.
THEOREM 1. Let F be h-free and A Z B be finitely generated

submodules of F. If Be \NF and B(B) = {bc B: hb = B}, then A + B(B)
18 nice in F.
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Proof. Let x€F. We seek an element in z + 4 + B(B) of
maximum height. By Lemma 2 we can assume that x is A-proper.
If hx < B then z is also (A + B(B))-proper and we are done. So we
may assume that Az = 8. By Lemma 2 we can pick vy in 2 + B(B)
of maximum height. Consider ¥ + o + b where ae A and be B(B).
If ha < B then h(y + a + b) = ha < hy. If ha = B then a + be B(R)
o Wy + @ + b) < hy. Thus y is the desired element.

Let .22 be the class of finitely related valuated modules which
are cokernels of h-free modules, that is, of the form B/A where B
is finite rank h-free and A is finitely generated. The following
corollary shows that lots of submodules of objects in .9 are nice.

COROLLARY 4. Suppose Me o and S s a finitely generated
submodule of M. If BexMlet S(B) = {xe S: ha = B}. Then p"(S(B))
18 nice wn M. In particular, S ts nice in M.

Proof. Write M = F/A where F is h-free and A is finitely
generated. Then S = C/A for some h-free submodule of F. Let
B=p"C+ A. Then D=A+BB+n)=A+ @ C)B+n=A+
p"(C(R)), so D/A = p*(S(B)). But D is nice in F' by Theorem 1. Hence
p"(S(B)) is nice in M. By Choosing B to be the minimum of the
heights of the generators of F', and taking » = 0, we get S is nice
in M.

In the proof of Ulm’s theorem we need the following construction
(which is trivial in the p-group case).

COROLLARY 5. Let Me 2 and S a finitely generated submodule
of M. If xe M, then among the S-proper elements y of x + S we
can find one for which hpy is maximum.

Proof. We may assume that z is S-proper. Let 8 = hx. Then
x + S(B) consists of the S-proper elements of £ +.S. Choose an element
in px + p(S(B)) = {py: ycx + S(B)} of maximum height by Corollary
4. This gives the desired y.

3. KT-modules; uniqueness. A countable KT-module G is a
countable (discrete) module over a discrete valuation ring R, with a
reduced height function %, such that finitely generated submodules
of G are in .27 We restrict ourselves to countable modules, rather
than to countably generated modules, in light of the absence of
significant examples of discrete countably generated modules that
are not countable. If Gis a KT-module, and & < @ are elements of
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AG, then we can find an element z in @G such that hx = 3, and an
element y such that Ay = « and py = z. If hy > @ we have found
an element between « and B, that is, we have shown that a € 8.
If hy = ¢, then we can find & + 1 by writing the cyclic submodule
Ry as a cokernel of an h-free module. Hence we can always decide
whether @ € 8 or not. Thus by [2; Cor. Thm. 2], given & < 8 in
MG, we canfind @ 1. We say that MG has successors. This property,
the lack of which caused so many problems in [2], simplifies our task
considerably.
Let G be a valuated module of length A. For each « in X\ let

Fya)={xe G hx = a}

where 2 =y in Fya) if h(x — y) > a. The Ulm invariants fe(a)
of G are defined by

fo@) = {xe Fy(a): he € hpz} .
In addition we define the Warfield invariants go(a) by
gela) = I_‘l_{n Fyla + m)

where the connecting maps are induced by multiplication by p.

The set Fy(), and hence the Ulm and Warfield invariants, are
vector spaces over the field B/Rp. We need to establish some of the
constructive properties of these spaces.

LEMMA 3. If Ge ¢ and a e \G, then fia)is a finite dimensional
vector space over R[/Rp. Moreover there exists a finite subset X of
NG such that fo(a) =0 of a¢ X.

Proof. Let G be isomorphic to B/A where B and A are as in
Lemma 1. Consider U(x) = {be B:hb = a and pb = a,, for some i}.
We shall show that U(x) is a basis for fi(a). By Lemma 2 every
linear combination of elements of U(a) with unit coefficients is
A-proper, hence has height « in G, so U() is a linearly independent
subset of Fy(a). Moreover since h(pb — a,) > ha;; = @ + 1 we have
U(a) C fia). Finally, if xc B represents an element of fy(a), then
we can assume that x, = 0 or hz, = « for each 7. Let I= {i: 2, = 0}.
By Lemma 2 we may assume that ha,;, >« for iel. If ha,;>a+1
for some i€ I, then px would be A-proper, which is impossible since
x represents an element of fy(«). Hence ha,, = @ + 1 and so x, = u;b;
where b, € U(a) and w, is a unit, for each 1€ I. Clearly by examining
the elements a,; we can produce the desired finite set X.

COROLLARY 6. If G 1is a countable KT-module, then the Ulm
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and Warfield invariants of G are countable vector spaces over R/Rp
which are locally finite dimensional.

Proof. For the Ulm invariants this follows immediately from
Lemma 3. The argument for the Warfield invariants is different
because they do not satisfy Lemma 8. However they are obviously
countable, and if K is a finitely generated submodule of G, then
9x(a) = gx(@) where H = p™K as can be seen, for m =1, by con-
sidering the sequence

pK(@) < K(a) -2 pK(ee + 1) € K(a + 1) -2 ...

By Corollary 3 we can choose m so that H is h-free. Clearly any
finitely generated submodule of g,(«) is finite dimensional (although
gxz(a) may not be because H may have a basis element ¢ for which
we cannot tell whether or not ke + n = a for some n).

Note that gg(@) and gs(a + 1) are naturally isomorphic. The
reason for defining g, on all of A, rather than just on the limit points
in A, is that we may not know how to write a given element in A as
a + n for a limit & and a nonnegative integer =.

Two countable KT-modules G and K have isomorphic invariants
if they have a common length \, and for each @ in A we have
isomorphisms between f;(«) and fx(«), and isomorphisms between g4()
and gx(a) that respect the natural isomorphisms between g(«) and
gla + 1).

THEOREM 2. Let G and K be countable KT-modules with iso-
morphic invarionts. Then G and K are isomorphic.

Proof. We follow Kaplansky’s proof of Ulm’s theorem [1]. It
suffices to show that if @ is a height preserving isomorphism between
finitely generated submodules SS G and TS K, and if 2€ G, then @
can be extended to a height preserving isomorphism into K of the
submodule S + <{x) generated by S and =.

Since S + (x> is finitely related, either »™xe S for some m, or
pmx¢ S for all m. In the former case we may, by induction on m,
assume that pxe S. In the latter case we may by induction, and
Corollary 3 applied to (S + <{x))/S, assume that p™x is S-proper for
all m, and that hp™r = hx + m.

Suppose pre S. If xe S we are done. Otherwise we may assume
that « is S-proper, by Corollary 4, since S + (x> € . % and S is finitely
generated. By Corollary 5 we may assume that hpx = hpz if z is
an S-proper element of x + S. The proof now follows the proof of
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[2; Thm. 13], the last line of which should read hy > @ rather than
hy = a. The only change being that here we rely on the fact that
finitely generated submodules are nice, whereas there the finitely
generated subgroups were finite and hence automatically nice.

Suppose that p™x is S-proper and that Ap™x = @ + m for each
nonnegative integer m. It is readily seen that this is equivalent to
ze gua) but x¢ gg(a@). It will suffice to find ye€ gz(a) such that
y ¢ gr(a). Note that g,(a) is a detachable subspace of gr(a), since
if z is a nonzero element of gx(«) then z e g,(x) exactly when p™z is
not T-proper for some m, which is decidable by Corollary 3 applied
to (T + <x))/T. Let o be the isomorphism from gqa) to gx(®). If
ox ¢ gr(a) we are done. Otherwise, by repeated application of o™
and 0 we can construct a finitely generated submodule V of gg()
such that oxe @V = oV, or find our y along the way. ButoxrecoV
implies x € V which contradicts x ¢ gg(a).

4. KT-modules; existence. If G is a countable KT-module of
length ), then A is a countable ordinal and for each @ in A we have
countable vector spaces fq () and gy(@) over R/Rp which are locally
finite dimensional. We turn our attention now to the problem of
constructing a KT-module G with prescribed f; and ge.

DEFINITION. Let M be a countable ordinal with successors. For
each a in ) let f(«) and g(«) be countable, locally finite dimensional,
vector spaces over R/Rp. Then f and g are a pair of Zippin func-
tioms if

(1) If @ +1eX, then we have an isomorphism between g(«)
and g(a + 1).

(2) Given @ < B we can find 7 such that a <7 < 8 and either
Y+ 1= 8 or f(7)=+0.

(8) Given a we can find ¥ = a such that either f(7) # 0 or
g(a) = 0.

LEMMA 4. If G is o countable KT-module, then f; and g, are
a pair of Zippin functions.

Proof. We must verify properties 2 and 3 in the definition of
Zippin functions. Suppose @ < 8. Then we can find z in G such
that Az = 8 and ¥ in G such that py =2 and Ay = a. Let ¥ = hy.
If v+ 1< B then y is a nonzero element of f4«7). To prove 3,
suppose we are given «. We can find x such that hx = a. By
Corollary 3 we can find m such that Rp™x is h-free. So either
hp"*'x = hp"x + 1 for all » = 0, in which case x is a nonzero element
of gu(®), or hp "z > hp"x + 1 for some n, in which case p"z is a
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nonzero element of fy(hpx).

Let f and ¢ be Zippin functions on ». We say that Se 2 is
admissible with respect to f and ¢ if the valuation % on S takes
values in A, and if for each @< hS we have imbeddings fs(a)— f(«)
and gg(@) — g(@) that respect the isomorphisms g(a)— g(a + 1) and
gs(@)—gs(a +1). The fundamental construction step is the following.

LEMMA 5. Let f and g be a pair of Zippin functions on the
countable ordinal N. Let Se€ 2% be admissible with respect to f and
g. Suppose xeS and a < hx. Then we can construct Te . 5%
containing S such that T is admissible with respect to f and g, and
such that py = x for some y € T such that hy = «.

Proof. Since pS is finitely generated it is nice by Corollary 4
S0 we may assume that x is pS-proper. If « + 1 s kx we can increase
a, by property 2 of Zippin functions, so that f(a) = 0. If we still
have @ + 1 ha and in addition fg(@) = 0, then we replace a by
a + 1 and start all over again. Since fs(«) = 0 for only finitely many
«, by Lemma 3, we eventually have either

a+1=nhx or f(@) # 0 and fs(a) =0.

Let Re be rank-one h-free generated by ¢ where he = a. Let S= B/A
where B is h-free and A is finitely generated. Write x =0+ A
where hb = he. Let B = B@Re and A’ = A + R(b — pe). Set
T=DB/A and let y=a+ A, so py =2. Clearly any A-proper element
of B is A'-proper, so the imbedding of S in T preserves heights.
Moreover it is readily seen that k(s + wy) = min (ks, @) if » is a unit
in R. It remains to show that T is admissible with respect to f
and g.

We must define, for each £ in A, the imbeddings f,(8) — f(5)
and ¢g-(8) — 9(8). Now the imbedding S & T induces natural maps
fs(8) — f+(B) and g4(B) — 9-(B). The latter map is an isomorphism
for all 8 because pT' S S, so we have the map from g¢.(8) to g(B).
We shall show that the former map is an isomorphism if 8 # a.
Suppose s + ry is an element of f»(8). If r = pr', then s + ry =
s+ rrxefy(B). If r is a unit then B < k(s + ry) = min (hs, @) so
B =hs <a. Thus s+ ry is equal to s in F(B) so s + ry is equal
to an element of f(B).

It remains to take care of fr(a). Suppose a@ +1= hx and s + ry
is in fr(a). If r = pr’, then s + ry = s + r'x e fg(a). If r is a unit,
then @ = h(s + ry) = min (hs, @) so hs = a. Now a +1 < hp(s + ry) =
h(ps + x). But x was assumed to be pS-proper, so this case cannot
arise. Finally suppose f(«) = 0 and fs(@) = 0 and hx > @ + 1. Then
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fr(a) is generated by y, for if s + rye fr(a), then r is a unit and
hs = o and h(ps + rx) > a + 1, so hps > a + 1. Hence, since fs(x) = 0,
we have hs > a 80 s+ ry is equal to ry in F(a). Since f(a) %0
we simply map v € fr(«) to any nonzero element of f(«) and we have
the desired map fr(a) — f(a).

THEOREM 3. Let f and g be a pair of Zippin functions on the
countable ordinal N. Let Se€ 9% be admissible with respect to f and
9. Then S can be imbedded in a KT-module G such that fe(a) = f(a)
and gg(a) = g(a) for each & in N, and so that the height function on
G induces the valuation on S.

Proof. 1If p is a finite subset of A, and X is a finite subset of
S, then by repeated applications of Lemma 5 we can imbed S in an
object E(S, X, ¢) of %, and extend % so that E(S, X, z) is admissible
with respect to fand g, and so that if @e ¢ and z€ X with a < hz,
then there is a y in E(S, X, p) satisfying py =« and hy = a. We
shall construet G as the union of a chain S, S, < -+ so that S= S,
and so that the S, are admissible with respect to f and g, and have
a common height function k. Let x, 2, --- be an enumeration of
U...f(@), let ¥, ¥, --- be an enumeration of U.;9(@), and let
a, a,, +-- be an enumeration of . Let g, = {a,, -+, a,}. Let §,=S8
and let {s;,} be an enumeration of S,. The construction, for n =1,
2, +-+, proceeds as follows:

(1) Suppose n =3m + 1 and y, € g(@). Set S, =S, if y, is
in the image of g,, (); otherwise set S, = S,_, @ () where (2} is
a rank-1 h-free module of type a. Map z€ g, (@) onto Y.

(2) Suppose n =3m + 2 and 2, € f(a). Set S, = S,-, if z, is
in the image of fs, (@); otherwise set S, = S,_, @ (#) where z has
order p and height @. Map ze€ f; (@) onto x,.

(8) Suppose n =3m. Set S, = E(S,_, X,_., !.) Where X, , =
{s;sit+ 3 < n—1}

(4) Let {s;,} be an enumeration of S,.

The decisions in steps 1 and 2 can be made because f(a) and g(«)
are locally finite dimensional. Since G=J S, is a union of a countable
chain of objects in .97, it will be a KT-module if the valuation 4 on
G is a height function. Step 8 assures that property 4 of height
functions is satisfied. We must also show that hG = MU{}. Note
that steps 1 and 2 provide isomorphisms between fy(@) and f(«), and
between g4(a) and g(«).

Suppose @€ \. Then there is ¥ e\ such that ¥ = a@ and either
f() #0 or gla) #0. If g(a) + 0, then hx = « for some x€ G. If
f(¥) # 0, then we can find z,€ G such that hzx, =7. If ¥ =a we
are done. Otherwise we can find z,€ G such that a =< hx, < hax,.
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Continuing in this way we will find an %,¢ G such that @ = hx, by
[2; Thm. 2].

5. Classical considerations. Is there anything here of interest
to the classical mathematician? One result is that Warfield’s definition
of KT-modules in [5] defines the same class of modules, in the counta-
ble case, as are defined here in section 3. To see this we note that
if A is a limit ordinal, then a countable reduced module A is a
r-elementary KT-module, in the sense of Warfield, if and only if

¢9.(n + n) is one-dimensional for n =10,1, 2, ---
9.{¢) =0 otherwise .

By Theorem 38 there is a KT-module B, in the sense of this paper,
with the same invariants as any given countable \-elementary KT-
module 4. Hence by Warfield's Ulm’s theorem [5; Thm. 3] we have
A = B so any countable \-elementary KT-module in the sense of
Warfield is a KT-module in the sense of this paper. It follows easily
that the two notions of a countable KT-module are classically equiva-
lent. Thus we have the following

THEOREM 5. A countable reduced module A is a (classical) KT-
module if and only if every finitely generated submodule of A is
the cokernel of a finite rank h-free module.

We close with a few classical observations which may have gotten
lost in the preoccupation with constructive problems. Lemma 1
provides a canonical form for submodules of finite rank h-free modules
and demonstrates that finitely generated submodules of i-free modules
are h-free. Lemma 2 shows that such submodules are also nice.
The proof of Lemma 3 shows how to read the Ulm and Warfield
invariants of B/A from the canonical form of A £ B given in Lemma
1. Theorem 3 gives precise conditions for a finitely generated valuated
module S to be imbeddable in a countable KT-module with prescribed
invariants (in view of Theorem 5 which says that S must be in .2%").
Theorem 5 implies that every finitely generated submodule of a K7-
module is nice.
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