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In this paper we prove the following theorem.

Let (R, a) be an henselian couple and let Z°(R) be the
set of isomorphism classes of Azumaya R-algebras; then the
canonical map

P(R) — P(R/a)
is bijective.
As a corollary we obtain that, if (R, a) is an henselian
couple, then the canonical homomorphism
\@@(R) —_— .@z(R/a)

between the Brauer groups, is an isomorphism.

Introduction. The corollary mentioned in the abstract generalizes
a theorem of Azumaya ([2], Th. 81). The proof is similar to the one
used by Grothendieck in proving the above theorem in case that R
is a local ring and a is its maximal ideal ([6], Th. 6.1).

Concerning the definition of henselian couple and Azumaya algebra
we refer to [10] and [9] respectively.

All the rings and algebras are supposed to have unity.

In §1 we recall some properties of representable functors and
smooth morphisms we shall need later.

In §§2,83 we study two particular functors F,, F, from the
category of commutative R-algebras to the category of sets and we
prove that F, and F, are represented by smooth commutative
R-algebras. These functors will be used to prove the theorem.

In § 4, applying a known property of henselian couples, we obtain
the theorem stated before and deduce some corollaries.

1. In this section we give some properties of representable
functors and smooth morphisms.

Let R be a commutative ring; if F: (comm. R-alg.)— (sets) is a
functor we will say shortly that F is a sheaf if F' is a sheaf of sets
on the category of affine schemes over Spec R in the Zariski topology
(1] Def. 0.1 and 0.2).

PROPOSITION 1. Let F: (comm. R-alg.) — (sets) be a functor and
suppose that F is a sheaf. Suppose that there exists a family [filic:
of elements of R gemerating the unity ideal in R, such that the
functor F;: (comm. B, -alg.) — (sets) induced by F 1is representable
for all ie I, then F is representable.
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296 ROSARIO STRANO
Proof. The proof is straightforward and we omit it.
Now we recall the definition of smooth E-algebra.

DEFINITION 1. Let U be a commutative R-algebra. We say that
U is smooth if

(a) U is of finite presentation.

(b) U is formally smooth, i.e. for every commutative E-algebra
S, for every nilpotent ideal I of S, and for every RE-homomorphism
U— S/I, there exists an R-homomorphism U— S such that the diagram

S

v

S/I

commutes.

PrROPOSITION 2. Let U be a commutative R-algebra of finite
presentation and S a faithfully flat commutative R-algebra; then U
is a smooth R-algebra if and onlf if U S is a smooth S-algebra.

Proof. See [5] Corollary 17.7.2.

PROPOSITION 3. Let U be a commutative R-algebra of finite
presentation; if for every prime ideal » of R, U, is a smooth
R,-algebra, then U is a smooth R-algebra.

Proof. Let P be a prime ideal of U and let p=PNR. U, is
a smooth R,-algebra by hypothesis and it is easy to prove that U,
is a formally smooth U,-algebra. Hence U, is a formally smooth
R,-algebra and, by [5] Th. 17.5.1, U is a smooth R-algebra.

2. In this section we consider the functor F, defined as follows.
Let A and A’ be two Azumaya R-algebras; let a be an ideal of R
and suppose that

AjaA ~ A'JaA’ .
For every commutative R-algebra S, define
F\(S) = Isomg . (AR S, A’ ® S)

i.e. F,(S) is the set of isomorphisms of the S-algebra A @ S onto
A'® S. It is easy to see that F), is a sheaf. The functor F', satisfies
the following properties.

(1) F, is representable.
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By Proposition 1 we can suppose that A and A’ are free as
R-modules and with the same rank =, because of the hypothesis
AlaA ~ A’'faA’. Let {¢} and {¢}, 1 =1, ---, n, be bases for A and
A’ respectively and let

—_— { N L ’
€i6; = ; Mi51Cr » €:6; = ; Moi51€%

be the multiplication laws in A and A’ respectively. Let : AR S—
A’ ® S be an isomorphism; we can write

Ple;) = Z", x.e;, Xy €S

where the z,;’s must satisfy the following conditions:
(a) since @ must satisfy @(ee;) = P(e,)P(e;) we have

— ’
; M5 Prs = %‘. Mg 2% 51

for all ¢, 5,t =1, «++, n.

(b) det () is invertible in S.

Then consider the ring E[.-.., X; ---] where the X,;’s (4, j =
1, ..., m) are indeterminate and let

Jiie = Zk Mgy Xpe — kzl M X X1
and
d=det(X,;).
We set

U, = (flredo )

and define the isomorphism
P ARQU,— A ® U,
by
Ple) = 3 Xije; -

It is immediate to see that the couple (U, ®) represents the functor
F..

(2) The R-algebra U, which represents F, is smooth.

(a) By the definition of U, we have that U, is locally of finite
presentation, hence U, is of finite presentation ([4] Prop. 1.4.6).

(b) To prove that U, is formally smooth, by Prop. 3 we can
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suppose R local ring. Consider the strict henselization B of R; it is
known that, if m is the maximal ideal of R, then mR is the maximal
ideal of B and the residue field 2 of R is a separable closure of the
residue field £ of R ([11], Chap. VIII §2). We have A® 2 =~ M,(Q),
i.e. the full matrix algebra of rank #» over @ ([9], Chap. III, Cor.
6.3); by this we have

AQ R =~ M.(R)

([3] Cor. 5.6).
By Proposition 2 we can suppose that

A=M(R) = A
then U, represents the functor
Aut (M,): (comm. R-alg.) — (sets)
defined by
Aut (M,)(S) = Auts... (M.(S)) .
We must prove that, if I is a nilpotent ideal of S, the map
Auts.ois (M(S)) — Auty.ag (M(S/1))

is surjective.
This is an immediate consequence of the following proposition,
because there is a bijection between

Autg .. (M,(S))

and the set of all systems {e;} (4,5 =1, -.-, ) of matrix units in
M.(S).

PrOPOSITION 4. Let (S, I) be an henselian couple and C a finite
S-algebra. If {g;} (G,7 =1, ---,7) is a system of matric units in
C/IC, then {&;} can be lifted to a system {e;} of matrixz units in C.

Proof. The proof is the same as in [3] Th. 3.3.

3. In this section we consider the functor F, defined as follows.
Let P be a finite projective R-module and, for every commutative
R-algebra S, define F,(S) = set of multiplication laws m which can
be defined on S® P such that (S@ P, m) is an Azumaya S-algebra.
Note that F,is a sheaf: this is an easy consequence of the fact that
the property of being an Azumaya R-algebra is a local property on
Spec R([9], Chap. III, Th. 6.6). The functor F), satisfies the following
properties.
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(1) F, is representable.
By Proposition 1 we can suppose that P is a free R-module of
rank ». Let {¢} (1 =1, ---,n) be a basis for P. A multiplication

law on P® S is defined by
e.e; = %‘4 M1 s Mg €S
where the elements m,; must satisfy the following properties. By
the associative law (e.e;)e, = e;(eje,) we have
El: (MM — Mgy,

for all ¢, 5, k, t=1, -+, n.
Let 1 = 3}, x;¢; be the identity element; we have

Z TMyj, = Z LMy, = Oy
K ?

forall ¢, k=1, ..., n.
In order to express the condition that (P& S, m) is an Azumaya
S-algebra, we recall the following proposition.

PROPOSITION 5. Let A be an R-algebra and suppose that, as
R-module, A is free of rank n; let {e} (+ =1, ---, n) be a basis. Then
A is an Azumaya R-algebra if and only if the matriz (a;), defined
by a;; = eje;, is an invertible matrixz in the ring M,(A).

Proof. See [2] Theorem 12.

Then if we denote by (b) = (3 mie) the inverse matrix of
(@) = s mj.e), we have

D MMy My, = 0%,
Jkt
for all ¢,1,s=1, ---, n.
Then consider the ring
Rl X, c0vs e, Yiity o005 o0-, :jk,...]

where the X.’s, Y;;.’s, Yi;.’s are indeterminate (¢, 5,k =1, ..., n).
Set Jiiwe = >u (Y Yiie — YY)

Gie = ZI: X Yie— 0 9= ZXinilc — O
hi, = Zk.t ink Y YJ"lt — 0uX,
J

. . ’
R, Xy venionn, YVijuy eonione, Yigg oor]

. . 7
("'; idkty ** 0y s Giky 0ty oty Gkt hils, "')
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Define on P U, a multiplication law m by
€€; = zk: Xijken s

then it is easy to see that (U, m) represents F,

(2) The R-algebra U, which represents F, is smooth.

(a) As with the algebra U, U, is of finite presentation.

(b) To see that U, is formally smooth, consider the following
proposition.

PrROPOSITION 6. Let S be _a commutative R-algebra and I a
nilpotent ideal of S; then if A is an Azumaya S/I-algebra, there
exists an Azumaya S-algebra A such that A/IA =~ A.

First we prove that the proposition implies U, formally smooth,
i.e. the map F,(S) — F,(S/I) surjective. Let € Fy(S/I); call A the
algebra (P ® S/I, m). By Prop. 6 there exists an Azumaya S-algebra
A such that A/JA ~ A. Call @ the S-module underlying to A; Q is
finite and projective and Q/IQ ~ P ® S/I. Since Q is projective the
above isomorphism lifts to an S-module homomorphism ¢: @ = P S
and it is easy to prove that @ is an isomorphism. Hence the multi-
plicative structure on A is carried by ¢ to a multiplication m on
P® S whose image in Fy(S/I) is .

Proof of Proposition 6. We can suppose that 4, as a projective
S/I-module has constant rank » (by [9] Chap. I. Lemma 6.3 and [3]
Cor. 3.2). It is known that there exists a faithfully flat étale extension
S' of S = S/I such that

ARS8 =~ M)

with 7* = »n ([9] Chap. III Cor. 6.3).

By a known theorem ([11] Chap. V, Th. 4) there exists an étale
S-algebra ' such that S'/IS’ ~ S’ and it is easy to see that S’ is
faithfully flat S-algebra. Now recall that, if S’ is a faithfully flat
extension of S, the isomorphism classes of Azumaya S-algebras A
such that

ARS ~ M. (S)
are classified by
H'(S'/S, Aut (M,))

where Aut (M,): (comm. S-alg.) — (groups) is the functor defined before
([9] Chap. II, Rem. 8.2). Then the Proposition 6 follows from the
lemma.
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LEMMA. Let S' be a faithfully flat extension of S, I a nilpotent
ideal of S, F: (comm. S-alg.) — (groups) e functor represented by a
smooth S-algebra. Let S = S/I, §' = S'/IS' and F: (comm. S/I-alg.) —
(groups) be the functor induced by F. Then the canonical map

H'(S'/S, F) — HYS'/S, F)
18 bijective.
Proof. [7] Lemma 8.1.8, page 404.

4. In this section we prove the theorem enunciated in the intro-
duction and deduce some corollaries.
First we recall a result on henselian couples.

THEOREM 1. Let (R, a) be an henselian couple and U a smooth
R-algebra; then the canonical map

HomR—aIg (Uy R) - HomR-alg (U’ R/a)

is surjective.
Proof. See [8] Theorem 1.8.

Now we are able to prove the following propositions.

PROPOSITION 7. Let (R, a) be an henselian couple and A, A’ two
Azumaya R-algebras such that AjaA ~ A'JaA; then A = A'.

Proof. By Theorem 1 and §2.

PROPOSITION 8. Let (R, a) be an henselian couple and A an

Azumayae Rja-algebra; then there exists an Azumaya R-algebra A
such that AjaA ~ A.

Proof. Let P be the finite projective R/a-module underlying to
A; then by [3] Theorem 4.1 there exists a finite projective R-module
P such that P/aP ~ P. Then the proposition follows from Theorem
1 and §3.

THEOREM 2. Let (R, a) be an henselian couple and let P(R) be

the set of isomorphism classes of Azumaya R-algebras. Then the
canonical map

F(R) —> F(R/a)

1s bijective.
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Proof. By Propositions 7 and 8.

COROLLARY 1. Let (R, a) be an henselian couple; then the ca-
nonical homomorphism

BAR) — B(R/q)

between the Brauer groups is am tsomorphism.

Proof. The injectivity is in [3] Proposition 5.7; the surjectivity
follows from Theorem 2.

COROLLARY 2. Let (R, a) be an henselian couple and let
G: (Azumaya R-alg.) — (Azumaya R/a-alg.)

be the functor defined by G(A) = AJaA for every Azumaya R-algebra
A. Then G is essentially bijective and full, but, if a # (0), is not
Jaithful.

Proof. G is essentially bijective means exactly what we proved
in Theorem 2. In order to prove that G is full consider two Azumaya
R-algebras A and A’ and define the funector

F': (comm. R-alg.) — (sets)
by
F'(S) =Homg ,, (AR S, A ®S).
As with the functor F, we can prove that F’ is represented by an
R-algebra U’ of finite presentation.

To prove that U’ is a smooth R-algebra we can suppose, as with
the algebra U, A ~ M,(R) and A’ ~ M,(R). Now observe that, if
®e F'(S) and {e;;} (¢, 5 =1, ---, n) is a system of matrix units in A4,
then {@(e;;)} is a system of matrix units in A’, hence we have

FFS)=0 iftm=mn.
F'(S) = Autgp, (M (S)) if m=mn.

Hence U’ is a smooth R-algebra and by Theorem 1 we have that

G is full.
Now let aca,a #0. Consider the inner automorphism « of

M,(R) given by the element

(1+a 0

0 1) € My(R) ;

the induced automorphism @& of M,(R/a) is the identity automorphism
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while « is not the identity automorphism of M,(R). This proves that
G is not faithful.

Now suppose R connected and reecall that two Azumaya R-algebras
A and A’ are said to be stable isomorphic if there exist integers m
and 7 such that

M, (A) = M,(4") .

Denote by 22 7Z(R) the set of stable isomorphism classes of Azumaya
R-algebras ([6] Remark 1.8).

COROLLARY 3. Let (R, a) be an henselian couple and suppose
that R/a is connected. Then the canonical map

FP(R) —> % P(Ra)
18 bijective.

Proof. First we observe that if R/a is connected then R is
connected. Now we show that M,(4) is an Azumaya R-algebra, if
A is an Azumaya R-algebra: in fact we know that there exists a
faithfully flat extension S of R such that A&® S = M,.(S); then
M(A KRS =M,,,(S), i.e. M,(A) is an Azumaya R-algebra. Then
the Corollary 3 follows from the Propositions 7 and 8.
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