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Let S and T be (bounded) scalar operators on a Banach
space 22 and let C(T, S) be the map on <Z (%), the bounded
linear operators on 27, defined by

C(T,SNX)=TX— XS

for X in £ (#°). This paper was motivated by the question:
to what extent does C(T, S) behave like a normal operator
on Hilbert space? It will be shown that C(T, S) does share
many of the special properties enjoyed by normal operators.
For example it will be shown that the range of C(7, S) meets
its null space at a positive angle and that C(T,S) is
Hermitian if 7 and S are Hermitian. However, if &2 is a
Hilbert space then C(T, S) is a spectral operator if and only
if the spectrum of T and the spectrum of S are both finite.

We now indicate our results in greater detail. Let 5# be a
Hilbert space and let N be a normal operator in <& (5#). Then N
enjoys the following properties.

(A) Z(N) is orthogonal to _#"(N), where Z(N)(_#"(N)) donotes
the range (null space) of N.

B) Z(N) @ .+ (N) = 57, where the bar denotes norm closure.

(C) There is a resolution of the identity E(.) supported by
o(N) such that

N= S ME,
a(N)

where o(N) denotes the spectrum of N. That is, N is a scalar
operator.

(D) If xze E((\})2# for some complex number A, then Nz = Ax.

(E) N has closed range if and only if 0 is an isolated point in
o(N). (We adopt the convention that 0 is isolated in o(N) if
0¢ a(N)).

(F) The norm, spectral radius, and numerical radius of N are
equal.

(G) The closure of the numerical range of N is the convex
hull of the spectrum of N.

In §§1, 2, and 3 of this paper we show that appropriate versions
of (A), (D), and (E) hold for C(T, S). In Section 4 we restrict
ourselves to the Hilbert space case and show that (B) is false in
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general. This result enables us to give the characterization of
operators of the form C(T, S) which are spectral operators which
was mentioned above. In §5 assuming that 7 and S are normal
operators on a Hilbert space, we show that (G) holds but that in
general (F) is false for C(T, S). We conclude the paper with an
example of a Hermitian operator whose square is not Hermitian.

In the sequel an operator shall be called spectral (scalar) if it
is spectral (scalar) in the sense of Dunford. An operator shall be
called Hermitian if it is Hermitian in the sense of Lumer and Vidav
(see [7]). We shall make use of the theory of decomposable
operators as presented in [3]. If T is a decomposable operator on a
Banach space .2° and F is a closed subset of the complex plane C
(or the real line R) we shall usually denote the spectral maximal
subspace of 27 associated with T and F by 27(F). However, the
spectral maximal subspace of <& (2") which is associated with C(T, S)
and the complex set F' shall be denoted by <Z,(F). The derivation
C(T, T) shall sometimes also be written as 4,. Following [1], if N
is a normal operator on a Hilbert space we shall call 4, the normal
derivation induced by N.

1. It is shown in [1] that if N is a normal operator in <& (5#)
then

Y —4(X) i =1l Y

for all X in &#(5#) and all Y in _#7°(dy). In this section we
obtain a generalized inequality for C(T, S). Since the proofs are
generally similar to those given in [1], we will be brief.

DerINITION 1.1. Let .# and .4~ be (not necessarily closed)
subspaces of a normed linear space 27 We shall say that _#Z meets
A" at angle 8 (0 < 6 < 7/2) where by definition

sind =inf {||m + nil:me 4 ne 4 ||n||=1}.

If # meets .+ at angle ©/2 we say that _#Z s orthogonal to -
It is easy to show that _# meets .7 at angle 0 if and only if _#~
meets .#Z at angle 0 so that if _#Z meets .+~ at angle @ > 0 then
A" meets # at angle £ > 0. In general, however, & need not
equal G.

If T is an invertible element of <#(2°) then T is said to be
power bounded by K if for some K =1, ||T"||< K for n=
+1, +2, ...,

LeMmA 1.2. If T and S are invertible elements of <Z(2°)
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which are both power bounded by K then Z(C(T,S)) meets
A7(C(T, S)) at angle 0, where sind = 1/ K>

LEmMMA 1.3. If S and T are in & () and 1¢ o(T) U o(S) then
A(C(T, S)) = Z(C(W, V)) where W= (T —iI(T +iI)™" and V =
(S — ¢I)(S + <I)* are the Cayley transforms of T and S respectively.

LEMMA 1.4. Let T and S be scalar elements of Z(Z°) and let f
and g be real-valued Borel measurable functions on C which assume
only finitely many (real) values. Then the Cayley transforms of
AT) and g(S) are both power bounded by K for some K > 0.
Furthermore, the constant K does not depend on the particular
choice of f or g.

The proof of (1.2) depends on the following generalization of the
identity used to prove (1.4) in [1]: If X and Y are in < (2°) and
TY = YS then for each integer =

nT"Y = T"X — XS* — k§:; T+ TX — XS — Y)S*.

The proof of (1.3) is an obvious modification of the proof of (1.5)
in [1]. (1.4) follows easily from [5, Theorem 7, p. 330] (the constant
K depends only on the norms of the spectral projections associated
with T and S). Note that if T and S are normal operators on
Hilbert space K may be taken to be 1 in (1.4).

THEOREM 1.5. If S and T are scalar operators then there is a
real number 0 > 0 such that the range of C(T, S) meets the null
space of C(T, S) at angle 0. If T and S are mormal operators on
a complex Hilbert space then Z(C(T, S)) is orthogonal to A" (C(T, S)).

Proof. Let E(-) and F(-) be the spectral resolutions of identity
associated with T and S respectively. Partition ¢(T) U d(S) into
rectangles 0,9, +--,0, and let A\, be the midpoint of 0, for ¢ =
1,2, ---,n Let X and Y 'be in £(2) and suppose Y is in
A7(C(S, T)). Consider

(%) } Y — 3 MEG)X — X3 xkF(Bk)H :
To prove the theorem, it suffices to show that (x) =sind| Y| for
some ¢ >0 and all possible partitions of a(T)Uad(S). As in [1,
(1.6)], a computation shows that the range of the map X~
S MEO0)X — X3 N\ F(0,) does not change if the \,’s are
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replaced by any complex n-tuple {#, t, ---, #,} where the g,’s are
distinct. Hence, in (x) we may replace X by a suitable X, and
meanwhile assume that A, is real for t=1,2, ..., n. Then, by
(1.3) we may replace X, by another suitable X, and replace

vy MeE(0,) and 3Vio, N F(9,) by their Cayley transforms. By (1.4)
these Cayley transforms are power bounded by K. Hence, our first
assertion follows from (1.2) with sind = 1/K2% If T and S are
normal operators the constant K in (1.2) and (1.4) may be taken to
be 1. It follows that 6 = x/2.

COROLLARY 1.6. If N 1is a normal operator in B (%) and M\
and N, are distinct eigenvalues of 4, with corresponding eigenspaces
2 and 25, then 25 is orthogonal to Z and 2 is orthogonal
to Z7.

Proof. Z="(dy—NI)— 4" (C(N, N)—\1I)=_4"(C(N—\I, N))
(I denotes either the identity on S5# or the identity on <Z(5%)).
If 4,(X) =X then C(N — )\, N)(X) =\, —2)X so X is in the
range of C(N — M1, N). Hence, by (1.5) 25 is orthogonal to 27.
Similarly, 27 is orthogonal to 2.

2. If S and T are scalar operators on 2] then [3, p. 112]
C(T, S) is a generalized scalar operator and, hence, a decomposable
operator. Thus, <Z,({\}) is a spectral maximal subspace for each A
in the spectrum of C(T, S). In this section we prove that <Z({\})

consists solely of eigenvectors (i.e. (D) holds for C(T, S)) and give
two examples.

THEOREM 2.1. Z,({\}) = #7(C — M) for each N in o(C(T, S)),
if T and S are scalar operators in Z(Z°).

Proof. Since T — M is a scalar operator if T is a scalar
operator we may assume A = 0. Let E(.) and F(-) be the spectral
resolutions of the identity associated with T and S respectively.
Suppose that Xe & (2°) and that ||C™(T, S}X)|'"— 0 as n— oco.
Then [3, 4.5, p. 113] E(0)XF(6) = XF(0) for each closed subset d
of C. Hence,

E@)XF(v) = EG N 7)XF(Y) =0

for all Borel subsets ¥ with closure disjoint from 6. Let 0 be a
closed subset of C and let {7,} be disjoint Borel sets which cover
the complement of 6 and have closures from 6. Then
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E()X = EG)XF(U7,) + EG)XF()
=mwdgpm»+E@XMm
~ B(O)XFE) .

Therefore, E(0)X = XF(9). Since Borel measures are regular and
E(-) and F(-) are countably additive, F(0)X = XF(0) for each
Borel set 6 cC and so TX = X8, i.e., C(T, S)(X) = 0. The theorem
now follows from [3, 4.4, p. 113].

ExaMPLES Let 7 = {Ae C:|N\| =1} and let U be multiplication
by N on L*). Thus, U is the simple bilateral shift. Let E(.) be
the spectral measure associated with U. We show that 4, has no
non-zero eigenvalues. For if 4,(X)= —xX with A 0 then as in
(2.1) E(0)X = XE(0 + \) for each Borel set d(0 + N\ is the translate
of 0 by ). Therefore,

X = E(0)XE() = XE((r + M) N 7).

But (z + M) N7 consists of at most two points and E({¢}) =0 for
each ¢ in C; thus X = 0.

On the other hand, if M is multiplication by « on L*(0, 1) and W,
is the operator defined on L*(0, 1) by

flx—a) ifagsal

W) = | s —ndm =" 77 020

where a€ (0, 1) is fixed, then a simple computation shows
MW, — W.M = aW,.

Thus, depending (in part) on the geometry of the spectrum of
T, #,,({\M) may or may not be empty.

3., Our goal in this section is to show that (Z) holds for
C(T, S).

THEOREM 3.1. If T is a decomposable operator in B (Z°) such
that the range of T 1is closed and the range of T meets the null
space of T at angle 6 >0, then 0 is an isolated point of the
spectrum of T.

Proof. Since <Z(T) is closed, by the open mapping theorem
there is a constant M > 0 such that each y in <Z(T) has the form
y = Tx where xe 2 and ||z| < M|/yl|. Also, since Z(T) meets
A (T) at a positive angle, #7(T) meets “Z(T) at angle ¢ > 0.
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For each r >0 let F, = {AeC:[\| = r} and let T, = T|;,r,,- Then
o(T,) S F, so T exists and is bounded. Let 1/r, = M/sinp. We
show that || ;|| < 1/r, for all » > ¢. If ye 25(F,) then ye <2(T)
so ¥y = Tx for some ze 27 with ||z|| < M]|y|l. Let w=a — T;'y.
Then Tw = 0 so, since #7(T) meets <#(T) at angle ¢

sing || Tyl S Jw+ Tyl = el < Myl .

Since y was arbitrary, ||T;'|| < M/sin® =1/r,. It follows that
o(T,)C F,, for all » > 0. Indeed, if T, — AI were not invertible for
some X\ in C with 0 < |\| < 7, then because T, is a decomposable
operator, |[(T, — N)x,||— 0 for a sequence x, of unit vectors in
27(F,) and

[ IN = I TPl | = @D 2 — AT, |
= (F T WIND [T, = M), ||

so that || T7*|| = 1/ x| > 1/r, a contradiction. Thus, o(T)cC F,, U
{neC:[n] <7} for all » >0 and so 0 is an isolated point of o(T').

ExamPLE 3.2. Let V be the Volterra operator defined on L*0, 1)
by

vH@ = | e .

Then V is an injective compact quasinilpotent operator with dense
range. Hence, V is a decomposable operator such that 0 is an
isolated point of its spectrum and <F(V) is orthogonal to
A47(V)(= {0})). However, since V is a compact operator, its range
cannot be closed.

Recall that Lumer and Rosenblum have shown [6] that for any
T and S in & (2°)

o(C(T, 8)) = o(T) — o(8) = {» — p:nea(T), pea(S)).

It follows easily that 0 is an isolated point of ¢(C(T, S)) if and only
if o(T)N o(S) consists of points which are isolated in both ¢(T)
and 6(S). When this occurs we shall say that T and S have almost
disjoint spectra.

THEOREM 3.8. If T and S are scalar operators im F(Z),
then C(T, S) has closed range if and only if 0 is an isolated point
of o(C(T, 8)). In particular C(T, T) has closed range if and only
if o(T) is finite.

Proof. As remarked previously, C(T, S) is a generalized scalar
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operator; hence a decomposable operator. Furthermore, by (1.5) its
range meets its null space at an angle 6 > 0. Thus, if <Z(C(T, S))
is closed 0 is an isolated point of a(C(T, S)) by (3.1). Conversely,
suppose that 0 is an isolated point of ¢(C(7, S)). Then T and S
have almost disjoint spectra. Let {\, ---, \,} = o(T) N o(S) and let
E(.) and F(-) be the spectral resolutions of the identity associated
with T and S respectively. Put P, = E({\}), Q. = F({\}) for 1 =<
ksn, Pp=1—-33., P, and @, =1I— D1 Q. Let %:‘:Pi'-%’(g)Qi
for 0<i¢<% and 0 <j=<mn. Then each <Z; is an invariant sub-
space for C(T, S) and the span of the <&;’s is <& (2°). Hence, it
suffices to show that C,; = C(T, S)|5,, has closed range for 0 =< 1,
j=mn. Now if 10, 7% 0 and Ye<Z; then C;)(Y) =\ — N;)Y.
Thus, in these cases C;; has closed range. Also, if 1<4<mn and
Ye-%o: Czo(Y) = x’iPiY'—' YS= )"iPiYQO - PiYQOS = PiYQoO“iI_ S)'
Since (A — S) g+ is invertible (A; is isolated in a(S)) C;, has closed
range. Similarly, C,; has closed range for 1 <j < n. To complete
the proof we show that C, has closed range. Note that (T |p,=) N
0(Slg,2) = @. Choose a real number %k so that k> [[S| + || T||
and define S,=S8SP,+k(I—P) and T, = QT — k(I —Q,). Then
o(S)No(T) =@ and C(T, S, is invertible on £#(2°). Thus, for
each X in <£#(2°) there is Y in <& (2°) so that T7.Y — YS, = X.
Hence, P,XQ, = TP, YQ, — P,YQ,S and so C, is onto <Z,.

4. In this section we restrict ourselves to scalar operators T
and S acting on a complex infinite dimensional Hilbert space 2#%
Recall that an operator T in <& (5#°) is of scalar type if and only
if T is similar to a normal operator [10].

THEOREM 4.1. Suppose that N, and N, are mormal operators
on & complex, infinite dimensional Hilbert space 57 and that
o(N) N (N, contains a point N which s an accumulation point
Jor at least ome of these spectra and is either an accumulation point
or else an isolated eigenvalue of infinite multiplicity of the other.
Then there is an operator V im B(57°) such that the span of the
null space and the range of C(N,, N,) is orthogonal to the span of V.
In particular Z(C(N,, N,)) + 4+ (C(N,, N)) is not dense in Z(S7).

Proof. We assume that » = lim\, where {)\,} is a a sequence of
distinct elements in o(,). The proof for the other case is similar.
If A is an accumulation point of o(N,) choose a sequence {#,} of
distinct elements in o(XN,) so that N = lim g,. Taking subsequences
if necessary, we may assume that the g,’s are also distinct from
the »,’s. If A\ is an isolated eigenvalue of infinite multiplicity for
N, take » = p,,.
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Let E,(-) be the spectral measure associated with N, for 7 = 1, 2.
Choose disks D, of radius 7, about A, so that D,N D, =@ if
n+m and p,¢ D, for any n or m. Note that since N,—N, 7,—0.
For each n put P, = E,(D,), and choose a unit vector f, in the range
of P, (P, 0 since ), €0(N,)). If A is an accumulation point of
o(N,) choose disks D, of radius 7, about g, so that D, N D, = @
and D,ND,=@ for all m and n. Put Q,= E D,). If N\ is an
isolated eigenvalue of infinite multiplicity for N, let {Q,} be an
infinite set of nonzero, mutually orthogonal projections such that
Q. = E,({\})) for each n. In either case for each n choose a unit
vector e, in the range of Q,. Define V on 5# by Ve, =f, and
Vax = 0 for z in the orthogonal complement of the span of {Q,5#}7_..
Then Ve Z#(5#) and ||V|| = || P, VQ,|| =1 for all n. In fact V is
a partial isometry. Let X and W be in & (5#) and suppose that
N, W = WN,. Then (as in (2.1)) E(0)W = WE,0) for each Borel set
0cC. Let

a=|[V—-W-(NX-XNy)| .
To complete the proof we show that a = 1.

=1 - || WE(D,)Q.|| — || NP.XQ, — P.XQ.N,|| .

Now E(D,)Q, = 0 since D,N D, = @ and A¢ D, so

- H#nPnXQn - -PnXQ'nM” .

Thus,

which goes to 0 as #— . Hence, o = 1.

THEOREM 4.2. Let T and S be scalar operators in B ().
The following are equivalent.

(@) C((T — M), S) has closed range for each neC

(b) C(T, S) is a spectral operator

() C(T, S) ts a scalar operator

@) o(T)Ua(S) is finite.

Proof. Clearly, T — X[ and S have almost disjoint spectra for
all » in C if and only if o(T) U a(S) is finite so (a) is equivalent to
(@) by (8.3). If o(T)Uo(S) is finite then so is ¢(C(T, S)). In this
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case the Riesz-Dunford theory implies that C(T, S) is a spectral
operator and, in virtue of (2.1) it is even scalar. Hence, (d) implies
(b). Since the implication from (c) to (b) is trivial, to complete the
proof we need only show that (b) implies (d). Hence, assume that
C(T, S) is a spectral operator. Since T and S are scalar operators
in &#(5#), there are normal operators N, and invertible operators
X, in Z(2#) for 1 =1, 2 so that

T=X,NX and S = X,N,X;*.
Define 6 acting on Z(5#) by &(Y) = X;*YX,. Then
OC(T, S)0' = C(N,, N,)

and so C(N, N,) is a spectral operator. Let FE(.) be the spectral
resolution of the identity associated with C(N,, N,). Then [3, p. 33]

Bi(0) = E(0)Z (%)
for all closed subsets 0 in C. Hence, by (2.1)
A(C(N,, Ny) = ZBo({0}) = E({0})Z (2F) -

On the other hand, .Z,(6) c <Z(C(N,, N,)) for each closed subset o
of C with 0¢ 0 so that the countable additivity of FE/(-) implies

E({C\{0))Z (527) . 2(C)”

where the bar denotes the closure in the uniform topology. There-
fore, the algebraic direct sum

B(C) + N(C) = B (7).

Now C; = C((N, — nI), N,) = C(N, N,) — xI is a spectral operator
for each )\ in C so as before

(*) Z(C)” + A(C) = ()

for each complex \. If both o(V,) and o(V,) were infinite then for
some X\, 0(N, — A) N o(N,) would contain a common accumulation
point and by (4.1) () would be false. Thus, either N, or N, has
finite spectrum. Say o(N,) is finite. Then, since 5% is infinite
dimensional N, has an isolated eigenvalue of infinite multiplicity.
If o(N,) were infinite (4.1) would again contradict (x). Thus,
o(T) U a(S) = o(N,) Ua(N,) is finite.

Remarks 4.3. Clearly, (a) and (d) remain equivalent if T and
S are scalar operators acting on a Banach space. We do not know,
however, if (b) and (c) are also equivalent to (d) in this more
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general setting. Unfortunately, our proof does not appear to
generalize. Our proof depends on the existence of an operator V
which is not in the closed linear span of <#(C) and _#°(C). Although
V can be formally defined in the Banach space setting, it is not
clear that V will be bounded.

5. In this section we investigate the extent to which properties
(F) and (G) hold for C(T, S) and use our results to give an example
of a Hermitian operator whose square is not Hermitian. We begin
by recalling the definition of the numerical range of an element in
a Banach algebra.

DEFINITION 5.1. Let U be a complex Banach algebra with
identity I. The set of states on U is by definition

GF ={fed* f(I)=1=|fl}.
The numerical range of an element ¢ in [ is by definition the set
Wia) = {f(a): fe &} .

Since & is a weak* closed convex subset of the unit ball of A*,
Wya) is a closed convex subset of C for each ac . If A = Z(5F)
Wy(-) is just the closure of W(-.) the usual numerical range (for
further information see [9]). The numerical radius of a is by def-
inition sup {| M |: v e Wi(a)}. The spectral radius of a is by definition
sup {{ M |: veo(a)}. An element a in U is Hermitian if Wy(a) is real.
Recall [7] that o in 2 is Hermitian if and only if ||exp(ite)|| =1
for all ¢ in R. For an operator T in <& (:2°) define the operators
L, and R, in Z(Z(Z)) by L/(X) = TX and R/(X) = XT.

THEOREM 5.2. If T is in & (2°) then W(T) = WyLs) = Wy(R7).

Proof. For each state f on Z(#(2)) the formula ¢g(X) =
f(Ly) determines a state g on & (2°). Hence, Wy(L;)< W(T).
Conversely for each state f on <#(2°) the formula ¢(Ly) = f(X)
determines a state g on {L;: Xe £#(2°)} which then extends by
the Hahn-Banach theorem to a state on all of Z(F(2)). It
follows that W(T)c Wy(L;) and so W(T)= Wy(L;). Similarly,
W(T) = W(R;).

COROLLARY 5.8. If T and S are Hermitian operator in & (Z°),
then C(T, S) is a Hermitian operator.

Proof. C(T,S)= L, — Rs. Thus
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WAC(T, 8)) ¢ Wi(Lr) — Wi(Rs) = W(T) — W(S)C R .

THEOREM 5.4. If N, and N, are normal operators in Z(5F)
where 57 1s a complex Hilbert space then C(N,, N,) = H + iJ where
H and J are commuting Hermitian operators.

Proof. Write N; = A; + iB;, where A; and B; are the real and
imaginary parts of N; for j=1,2. Let H= C(4, 4, and J =
C(B,, B,). Then H and J are Hermitian operators by (5.3) and
since A;B; = B;A; for j =1,2, H and J commute.

THEOREM 5.5. If N, and N, are normal operators on a com-
plex Hilbert space then the spectral radius and the numerical
radius of C(N,, N,) are equal.

Proof. Palmer has shown [7, Lemma 1.6] that the conclusion
of the theorem holds for all operators of the form H + ¢J when H
and J are commuting Hermitian operators. Hence, the theorem
follows from (5.4).

ExAMPLE 5.6. The norm and the spectral radius of C(IV, N,)
need not be equal, however. Indeed, Stampfli has shown [8] that

IC(N, Np) || = inf {[[ N, = N[ + || Ny = M}

Thus, if N is a normal operator in <& (5#°) whose spectrum is an
equilateral triangle of side 1 then (Lumer and Rosenblum) the spectral
radius of 4, = C(N, N) is 1 but since the norm of N — A\ is equal
to the spectral radius of N — I, ||4y]| = 2/v'3. Note that in this
case d(4y) is a solid hexagon centered at the origin. On the other
hand, C(N,, N,) is a convexoid operator.

THEOREM 5.7. If N, and N, are normal ope on a complex
Hilbert space then the convexr hull of o(C(2 is equal to
W(C(N,, Ny)).

Proof. Let conv(-) denote the convex hull of the set within
the parentheses. Since od(a) C Wi(a) for any element a of a Banach
algebra A [9, Theorem 1] it suffices to show W(C(N, N,)C
conv (6(C(N,, N,))). Now

W(C(N,, N)) € Wo(N,) — WiN,) = W(N,)™ — W(N,)~
= conv (6(N,)) — conv (a(NN,))
= conv (6(NN,) — o(IN,)) = conv (6(C(N,, Ny)))
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where we have used (5.2) and property (G) of the introduction.

THEOREM 5.8. If P is a (self-adjoint) projection on a complex
Hilbert space 5¢° then LpRr is a Hermitian operator tf and only
of Pis 0 or I.

Proof. We give the proof in the case that 5~ has dimension
2 and P57 has dimension 1. The generalization to higher dimen-
sions is obvious. As remarked in (5.1) it suffices to show that
llexp (it LpRp)|| > 1 for some ¢ in R. Let

a2 1/2
[1/2 1/2]

on PoZ P (I — P)o# and let ¢t = 37/2. Then since exp (¢t LpR;) =
I+ (6" — 1)LR,,

T =

exp (it LpBo)(T) — [1/ 2 1 ZJ

12 1/2

which is a projection and, hence, has norm 1. On the other hand,
I T*T||?<8/4 as an easy computation shows. Hence, ||exp(it LpRp)||>1
for t = 87/2 and L,R, is not Hermitian.

ExampPLE 5.9. Let P be a projection as in (5.8). Then 4; is a
Hermitian operator by (5.3) but 4% is not a Hermitian oprator.
Indeed, since the Hermitian operators on <& (5#°) form a real vector
space and

LRy = %(Ap — &)

it follows from (5.8) that 4% is not Hermitian.
In conclusion we remark that Crabbe [4] and Browder [2] have
given similar examples.
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