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In a lattice-ordered group G a (descending) doubling chain
is a sequence a1 > α2 > > an > of positive elements of
G such that an iΞ> 2an+1. An element 0 < s e G is singular if
0 ^ # ̂  s implies that g A (s — g) = 0. The main theorems are
as follows: 1. The following two statements are equivalent:
(a) every doubling chain in G is finite; (b) G— \3τ<aG

τ{τ
ranging over all ordinals less than some a), where Cr is an
/-ideal of G, σ < τ implies that Gσ c Gτ and Gτ+1/Gτ is gener-
ated by its singular elements, (i.e. a Specker group, a la
Conrad). 2. If G is hyper-archimedean as well then either
of the above conditions is equivalent to: (c) G is hyper-^,
i.e. every totally ordered Miomomorphic image of G is
cyclic.

The purpose of this investigation was to come up with an
"elementwise" definition of the abelian lattice-ordered groups (hence-
forth abbreviated: Z-groups) having the property that each Z-homo-
morphic image which is totally ordered is cyclic. These Z-groups are
called hyper-^, and were first introduced by the author in [5].
Thus, G is hyper-^ if and only if G is abelian and G/P is cyclic,
for each prime subgroup P of G. These Z-groups are therefore
hyper-archimedean, and they can in fact be characterized as those
Z-groups for which all the prime subgroups are maximal and have
cyclic quotient; (see [3] and [5]). It should be stressed that in this
characterization no assumptions need to be made with respect to
commutativity. In [3] Conrad provided an example of an i-group
which is hyper-archimedean and also a subdirect product of Z, the
additive group of integers with the usual order, yet is not hyper-^.

An element s > 0 of the ϊ-group G is singular provided 0 ̂  g ^ s
implies that g Λ (s — g) = 0. An S-group (or Specker group) is one
in which each positive element is a sum of singular elements. These
S-groups are well explored in [3]; the main characterization is that
each S-group can be embedded as an Z-subring of bounded, integer-
valued functions on a set, or alternatively, as an Z-subgroup of
bounded, integer-valued functions generated by characteristic func-
tions. It was observed in [7] that the S-groups form a torsion class
of Z-groups; that is, they are closed under taking convex Z-subgroups,
Z-homomorphic images, and if G is any Z-group, and {Cλ\XeΛ} a
family of convex Z-subgroups which are all S-groups then the convex
Z-subgroup they generate is an S-group. There is thus an associated

503



504 JORGE MARTINEZ

S-radical Sf(G) of an Z-group G, and a "Loewy"-like ascending se-
quence S(G) = Sf\G) S S ^ Γ ( G ) S for each ordinal τ, so that

( a ) £f(G) is the largest convex Z-subgroup of G which is an
S-group.

(b) For any convex Z-subgroup A of G, S^(A) = i
( c) If a is a limit ordinal S^a{G) = \J {£^τ{G) \ τ < a),
(d) and otherwise S*τ(G) is defined by the equation:

Then we are able to define £s*(G) = £fτ(G), where τ is chosen so
that Sfτ(G) = ^Γ + 1((τ) — such a τ exists by a simple cardinality
argument. G is said to be an S*-group if S^*(G) = (?.

We should observe that if G is an S-group, it can be represented
as an Z-group of bounded, integer-valued functions, and it is therefore
hyper-%) (see [3]). Examples of hyper-^Γ Z-groups which are not
S-groups are easy to construct.

In an Z-group G, a {descending) doubling chain is a sequence
Si > s2 > of positive elements of G so that sn ^ 2sn+1, for each
n = 1, 2, . Notice that the terms of a doubling chain may even-
tually be zero; in such a case it is a finite doubling chain.

We can now state our first result.

THEOREM 1. G is an S*-group if and only if every doubling
chain for G is finite.

Proof. Necessity. The proof proceeds by transfinite induction
on the length of the Loewy sequence of S^T(G)'s. The first thing
to do is to show an S-group has this property. This is clear, because
if G is an S-group, it can be represented as an Z-group of bounded,
integer-valued functions; and there are obviously no infinite doubling
chains of such functions. Next, suppose G = S^a(G) and S^\G) has
no infinite doubing chains, for each τ < a. Suppose by way of con-
tradiction that ax > α2 > > an > is an infinite doubling chain
for G; if a is a limit ordinal, then aγ e S^β{G) for some β < a, and
hence each an e S^β{G), contradicting our assumption. If a has a
predecessor, then no an e S^a~\G), and consequently aι + S^a~ι{G) >
a2 + Sf"~\G) > is an infinite doubling chain in the S-group
GlS^a~ι{G). This again is a contradiction, and we must conclude
that G = S*a(G) has no infinite doubling chains; this completes the
proof of the necessity.

Sufficiency. Let us make a preliminary observation: for a given
ordinal τ, an element a > 0 of an Z-group G has the property that
a :> 26 ^ 0 implies that 6 e £fτ(G) if and only if a e S^τ{G) or else
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a + S^T(G) is a singular element of G/S*T(G). If a has this property
and a & £^τ{G) we call a (τ + l)-singular. (Note: for τ = 0 we set
Sfτ(β) — 0; then 1-singular simply means: singular.)

Suppose now that every doubling chain of G is finite. If 0 <
g e G and τ is an ordinal, then if g is not (τ + l)-singular we may
find an element 0 < aγ e G such that a1 $ Sfτ{G) and 2αt ^ g. Induc-
tively proceed to construct a doubling chain g>at> a2 > > ak >

 # >
where αfc is the last entry outside ^ Γ ((τ), and therefore (r + l)-sin-
gular. Thus, every positive element of G exceeds a (τ + l)-singular
element, for each ordinal τ.

Ίί GΦ <9**(G), we pick 0 < geG\9**{G), and an ordinal a such
that Sf*(G) = ^ α ( G ) . As we have indicated g^hίoτ some (α + 1)-
singular element A; that is, h is singular modulo S^a(G), which is
absurd. We must conclude that G is an S*-group, and Theorem 1 is
proved.

A hyper-archimedean ί-group is characterized by the condition
that each prime subgroup be maximal [3]. Therefore, every totally
ordered ϊ-homomorphic image of a hyper-archimedean ϊ-group is a
subgroup of the additive reals, by Holder's theorem. Now let us
prove:

THEOREM 2. Suppose G is hyper-archimedean; then it is hyper-
%* if and only if every doubling chain for G is finite.

Proof. Suppose G is hyper-%*, yet a1 > α2 > > an > is
an infinite doubling chain. The at are contained in an ultrafilter of
the positive cone of G, and thus a minimal prime subgroup P exists
so that an& P for each n — 1, 2, . (Recall that an ultrafilter is a
subset U of strictly positive elements of an Z-group H, maximal with
respect to the property: a, be U imply that a Abe U. For an ac-
count of the correspondence between ultrafilters and minimal prime
subgroups we refer the reader to [1] or [2].)

Continuing then, ax + P > α2 + P > is an infinite descending
chain for the archimedean o-group G/P; G/P can therefore not be
cyclic, and we have a contradiction.

Conversely, suppose every doubling chain of G is finite; then G
is an S*-group by Theorem 1, and it is easy to verify from this that
each totally ordered quotient of G is cyclic, since the class of S*-
groups is closed under ϊ-homomorphic images; (see [7]).

This is enough to establish Theorem 2.

COROLLARY. // G is hyper-archimedean, and A is an l-ideal of
G so that A and G/A are both hyper-%Ί then G is hyper-^.
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The following example illustrates the use of hyper-archime-
deaneity in Theorem 2 and the above corollary. Let G be the i-group
of sequences of integers by the eventually constant sequences and
a = (1, 2, 3, •••). This example was discussed in [6], and it was
shown there that G is not hyper-archimedean. Yet G is an extension
of an S-group by Z, and all its doubling chains are finite.

Finally, we state a corollary which says something about the
underlying group of a hyper-^Γ ί-group.

COROLLARY. If G is a hyper-^ l-group, then G is free, qua
ahelian group.

Proof. As an £-group is a subgroup of bounded, integer-valued
functions it is free abelian; this result goes back to Nobeling [8],
and it is further discussed by Hill in [4] and Conrad in [3]. If G
is a hyper-5Γ i-group then it is an S*group, say G = S^a(G); we
assume that Sfτ(G) is free abelian for each ordinal τ < a, and that
a free basis Xτ for Sfτ(G) can be picked so that Xσ = XT Π <9*°{G),
if σ < τ < a. If a is a limit ordinal, we let X = \J {Xτ \τ < a}; it
is easy to verify that X is a free basis for S^a(G). Otherwise, we
have that ^a~\G) is free, and so is the S-group S
therefore <9*a(G) is the direct sum of S^a~\G) and
Clearly then S^a(G) is free and there is a free basis for it exten-
ding Xa_lm

This proves the corollary; it should be noted that it is valid for
any abelian S*-group.
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