Pacific Journal of

Mathematics

ON LINEAR REPRESENTATIONS OF AFFINE GROUPS. I

MANFRED WISCHNEWSKY




PACIFIC JOURNAL OF MATHEMATICS
Vol. 61, No. 2, 1975
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MANFRED B. WISCHNEWSKY

The category of linear representations of an affine group
is isomorphic to the category of comodules over a k-Hopf-
algebra where & denotes a commutative ring. The category
of C-comodules Comod-C over an arbitrary k-coalgebra C is
comonadic over the category %-Mod of k-modules. It is com-
plete, cocomplete and has a cogenerator. The C-comodules
whose cardinality < max (cardk, {,) generate the category
Comed-C. Comod-C is in general not abelian but can nicely
be embedded into an AB-4 category. Comod-C is a tensored
and cotensored %-Mod-category (enriched over %-Mod) with
a canonical (E, M)-factorization which is the factorization
in %4-mod if and only if C is flat. Comeod-C has free C-
comodules if and only if C is finitely generated and pro-
jective. Furthermore I give numerous examples and counter-
examples as well as the explicit description of all construc-
tions, in particular of the limits in Comod-C which was not
known even for coalgebras over fields.

Let & be a commutative ring with a wunit. k-Alg shall denote
a small category of models of k-algebras (cf. [5] p. XXIV). Recall
that an affine k-monoid (resp. k-group) is a monoid (resp. group)
in the functor category [k-Alg, Sets] whose underlying functor is
representable. Let M be a k-module. Then M induces an affine
k-monoid <~ (M): k-Alg — Sets by L (M)(A) = End, (M Q. 4), Ac
E-Alg (cf. [5] p. 149). Let & be an affine k-monoid and M a k-
module. Then a monoid morphism @: & — (M) is called a linear
representation of & in M and the pair (M, ®) a k-%-module. The
definition of morphisms between k-2 -modules is evident. Thus one
obtains the category k-z-Mod of linear representations of &, resp.
of k-Z-modules. Sinece & is representable we obtain the canoniecal
isomorphisms [k-Alg, Sets] (&, L (M)) = L (M)C) = k-Mod (M,
M@, C), where C is the representing object of Z. The monoid
structure of < induces a k-coalgebra structure on C, i.e., the
representing object has two Ek-linear mappings 4:C— C® C and
e: C—k, called comultiplication and counit, such that (C, 4,¢) is
coassociative and counitary (cf. [19]). By the above canonical iso-
morphisms every monoid morphism @: & — & (M) induces a k-
linear map ¥yt M— M@ C such that MQ 4-%x = Yx @ C-)x and
M e-yy = idy, and conversely. A pair (M, y,> fulfilling the above
properties is called a C-comodule. Let {M, x,> and (N, yy»> be C-
comodules. A k-linear mapping f: M— N is a C-comodule homo-
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morphism if ¥y-f=FfQ Cxx. Let (M, »y) and (N, ®y) be k-Z-
modules and (M, %>, resp. {N, Xy» the corresponding C-comodules.
Then a k-linear mapping f: M— N is a k-%Z-module homomorphism
fi(M, py)— (N, y) if and only if f:{M, xy)—<(N, xy) is a C-
comodule homomorphism.

Hence the category of linear representations of an affine monoid
(group) is isomorphic to a category of C-comodules where C is a
k-bialgebra (resp. k-Hopf algebra).

In this paper I study the elementary properties of a category
of comodules over an arbitrary k-coalgebra. Categories of comodules
were already studied by several authors where & is a field or the
coalgebra is finite or flat (cf. [5], [7], [10], [14], [15], [17], [18], [19]).
In all these cases Comod-C is a Grothendieck category with a
generator. But if C is not flat then Comod-C need not to be abelian.
This was already shown in [17]. The homomorphism theorem is no
longer valid, the comodule structure on a subcomodule is in general
no longer unique and so on.

But even in the case of a flat coalgebra C one didn’t know as
yet such elementary things as the explicit desecriptions of limits.

Let C be an arbitrary coalgebra over a commutative ring k&
with a unit. Then the most important results of this paper are:
The underlying functor U: Comod-C — k-Mod is comonadic. The cate-
gory Comod-C is complete, cocomplete, wellpowered and cowellpowered,
has a generator and cogenerator. Comod-C can be embedded (full
and faithful) into an AB4-category with sufficiently many injectives
and projectives which in general fails to be a Grothendieck-category.
This embedding is coreflective if and only if all objects in Comod-C
are projective and is an isomorphism if and only if Comod-C is a
spectral category. The functor A: Comod-C — C*-Mod (cf. [14] §1 or
[19] Chap. II) is comonadic. Comod-C has free comodules if and
only if C is finitely generated and projective. Comod-C has a proper
(B, M)-factorization which is preserved by the underlying functor
Comod-C — k-Mod if and only if C is flat. Comod-C is well-powered
and cowellpowered with respect to this factorization. By applying
the techniques of V-categories I show that the k-Mod-category
Comod-C is tensored and cotensored. If f:C— C’ is coalgebra
morphism then the induced k-linear functor f*: Comod-C— Comod-C’
preserves tensors and is k-Mod-comonadic. The #k-linear funector
—® C: k-Mod — Comod-C has a k-linear-right adjoint. Furthermore
I give numerous examples and counterexamples as well as explicit
descriptions of all constructions.

I. Comodules over arbitrary coalgebras. In the language of
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monoidal categories a k-coalgebra {C, 4, &) is just a comonoid in the
monoidal category (k-Mod, ®) (ef. [11] Chap. VII 8). A C-comodule
(M, %yx> is a coaction of C on M and a C-comodule homomorphism
is a morphism between coactions of C in (k-mod, ®) (cf. [11] Chap.
VII 4). This formal description gives us at once some elementary
results such as the existence of a right adjoint of the underlying
functor U: Comod-C— k-Mod or the creation of colimits by U.

In the sequel I will give another desecription of Comod-C which
allows us to apply the highly developed theory of monads.

Let <C, 4,¢) be a coalgebra. The -coalgebra structure of
{C, 4, ¢) induces a functor

.= — X C; k-Mod — k-Mod
and functorial morphisms
d=—-R4LE —F*'=—-—QRQCRC
e=—-QeE — Id;_ye -

Since <C, 4, ¢) is a coalgebra (— ® C, — ® 4, — ® &) clearly defines
a comonad over k-Mod. A coalgebra {M, x> over this comonad is
a pair where M is k-module and y,: M — & (M) is a k-morphism
such that the following diagrams commutes

Exw)

F(M) 2 2 (p1)
A(M)I = Txy
M) —— M
T =)
X ‘[XM

M

A morphism f between & -coalgebras (M, x,» and (N, yy» is a
k-morphism f: M — N such that yy-f = &€ (f)-%y. Hence we obtain
the following

THEOREM 1 (Notation as above). Let {(C, 4,¢) be a coalgebra.

Then the category Comod-C of C-comodules 1is comonadic over
k-Mod.

From the elementary theory of monads we obtain at once some
important corollaries.

COROLLARY 2 (cf. [11], [13], [16]). The underlying functor
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U: Comod-C — Ek-Mod
has a right adjoint Z:k-Mod — Comod-C defined by

< k-Mod — Comod-C
M—{MRQIC, MR 4
f—f&XC

The comonad defined in k-Mod by this adjunction 1s the given
comonad {(— X C, — X 4, — R ¢e).

COROLLARY 8. The wunderlying functor U:Comod-C — k-Mod
creates colimits and isomorphisms. In particular Comod-C s
cocomplete and the colimits are formed in k-Mod.

COROLLARY 4. U creates those limits which are preserved by
—~®C. If C is flat and T:D— Comod-C is a finite diagram,
then p:Diag M— T s a limit in Comod-C if and only if Up:
Diag UM — UT 1s a limit +n k-Mod.

Applying 21.3.6 in [16] we obtain

COROLLARY 5. Comod-C s cowellpowered.

Since right adjoints preserve cogenerators we get
COROLLARY 6. Comod-C has a cogenerator.

Let & be a category with finite limits and finite colimits. A
functor F: C— C' is called left-exact (right-exact) if F preserves
finite limits (finite colimits). F is called exact if F is left-exact and
right-exact.

Since k-Mod is an additive category and — & C is additive and
right-exact we obtain from Remark 21.1.11 in [16] Chap. 21 the
well known

COROLLARY (cf. [7], [10]).

(1) Comod-C is an additive category.

@) U and & are additive functors.
Furthermore € is exact and U is right exact.

ProprosITION 8 (Notation as above). The following statements
are equivalent:
(i) U is exact.
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(ii) C s flat.

(iii) & preserves injectives.

Proof. (ii)— (i): Since U creates finite limits and is right exact
it is exact.

(i) — (ii): Let f: M— N be an injective k-module homomorphism.
Since ¥ is exact, (/) =fQRXC: MK C— N C is an equalizer in
Comod-C. Since U is exact f & C is injective, i.e., C is flat.

(i) — (iii): Well known.

(iii) — (i): Let m: (M, xxy — (N, Xv»> be a monomorphism in
Comod-C and f: M — @ an injective extension of M in k-Mod. Then
we obtain the following commutative diagram

@60 Meeue 5™ (NQC, N 1

8 3

(M, Lu (N, Ay

Since & preserves injectives, (Q ® C, Q® 4> = £ (Q) is injective
in Comod-C. Since £ (Q) is injective and m is a monomorphism
we obtain a comodule-homomorphism g: (N, %> —=<(Q® C, Q@ ¥ 4)
such that

l§ Il

FRCYu=9-m.

(M, Loy = (N, 2
f®C'Zul
Q®Ce®H

Since (M, %> is a C-comodule and ¢: — @ C— Id,_y. is a functorial
morphism we obtain the following equations:

Ey Y = 1y and foey, =6 fRC.

Thus f=f-idy = feeyYu = € f Q Cxy = €o-9-m. Hence m is injec-
tive since f is injective, i.e., U is exact.

If C is flat U creates finite limits and colimits. Since Comod-C
is additive and k-Mod is abelian we conclude that Comod-C is
abelian. Since furthermore k-Mod is a Grothendieck category and
U preserves and reflects colimits and monomorphisms Comod-C
fulfills AB5' (cf. [16] 4, 6.3), i.e., we obtain the following well known
result.

/
/

,
.
//g

COROLLARY 9. If C s flat them Comod-C is a Grothendieck
category. Furthermore U preserves and reflects finite limits and
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colimits. In particular a comodule homomorphism is an equalizer
(coequalizer) in Comod-C if and only if f is injective (surjective).

ExampLES 10. (1) Let k be a regular ring (regular in the
sense of von Neumann) (cf. [2] p. 175, EX. 13). Then Comod-C is
a Grothendieck category for every k-coalgebra C.

Let k& be a commutative, associative ring with unit. Let T be
a k-module. Then C=k@ T together 4(r,t)=rQR1+1R¢t+
t®1+ p(t) and &(r, t) = r is a coalgebra with unit (cf. [18], where
0:T—T® T is an arbitrary coassociative k-morphism (take for
example o = 0). Hence C =k @ T is flat (projective, finitely gener-
ated, ---) if and only if T is flat (projective, finitely generated, ---).

(2) Let A be a torsion free abelian group 4 and C=ZP A
with the above defined structure: Then Comod-C is a Grothendieck
category®.

(8) Let A be an abelian group which is not torsion free. (e.g.,
Z/nZ,Q/Z). Then the coalgebra C = Z@ A with one of the above
defined coalgebra structures is not flat'.

DerFINITION 11. Let (M, x,» be a C-comodule. A subcomodule
(N, %x» is a submodule N of M such that the inclusion i: N— M is
a comodule homomorphism.

ProPOSITION 12. Let Comod-C be an abelian category. Then
the comodule structure om a subcomodule is unique.

Proof. Let (N, x> and (N, x> be subcomodules of (M, x,».
Since the inclusion <: (N, x> — (M, ¥y is injective it is a mono-
morphism and hence an equalizer in Comod-C since Comod-C is
abelian by assumption. Hence the identity (N, y.) — (N, 3> must
be a comodule homomorphism. Since U:Comod-C— k-Mod creates
isomorphisms we obtain ¥, = X..

ExAMpLE 13. (cf. [18]) Let C=Z@ Z/,, be the Z-coalgebra
with the following structure:

Ao, D=2Q@1+1Q7+7QL+7T®1
&z, @) = z. (cp. (11) Ex. 1)
Then the category Comod-C of Z @ Z/nZ-comodules is not abelian.

By applying Proposition 12 we have only to show that there exist
a C-comodule (M, x,» and subcomodules (N, xy> and (N, yy> of

! Let % be a principal ideal domain. Then a k-module M is flat if and only if M
is torsion free (cf. [4] §24 Prop. 3 (id). :
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(M, %y Wwith %y # X¥. The following example was given in [18].
Take

M=Q/Z y,(7) =7®1
N=2/nZ; 157 =2R1

and
N=2ZnZ 3@ =2Q01+1R®7%.

Then the inclusion 4: Z/nZ—Q/Z:Z— (Z/n) is a comodule homo-
morphism for ¥y and ¥}. Since Xy # ¥» we obtian that Comod-C
is not abelian.

Conjecture 14. Comod-C is abelian if and only if C is flat.

In order to prove this conjecture one has to show that if
Comod-C is abelian then the comodule monomorphisms are injective
(cf. Proposition 8).

In [9], P. Freyd proves the existence of free abelian categories.
He does it by taking a category C and embedding it into a large
ambient abelian category. He then constructs the smallest exact sub-
category containing C. The external version of this construction was
made by M. Alderman in [1]. He gives an explicit description of
free abelian categories. I’'ll take up Alderman’s construction and
will show that the category Comod-C (for every coalgebra C) can
be fully and faithfully embedded into an AB-4 category with enough
projectives and injectives, the free abelian category over Comod-C
which in general fails to be a Grothendieck category.

Let us now recall Alderman’s construction. Let A4 be an addi-
tive category. In the functor category A~ define the following
equivalence relation:

AI l_) A —f_> AI’ AI _'f:_) A _'f__) AII
J e free]
BI —g_) B ___g_’ BI’ Bl L B __g_) BII

iff there are maps h,: A— B’ and h,: A” — B such that @ — ¢ =
g'h, + h,f, i.e., the two short complexes are homotopic. Then the
resulting category A~~/= is denoted by Ab(A4). Ab(4) is abelian
(1. The functor I,; A— Ab(A): A— (0— A—0) is obviously full
and faithful. Let now F be an additive functor from A4 to B with
B abelian. Then there is a unique exact functor F*: Ab(4)— B
such that the diagram
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A4 apa)

\F\ JI"*
B

commutes up to natural equivalence (cf. [1] Theorem 1.14).
Let now A4 be the additive category Comod-C.

THEOREM 15. Let C be a coalgebra. Then
(1) There exists an abelian category Ab(Comod-C) and a full
and faithful embedding

I: Comod-C — Ab (Comod-C)

such that every additive fumctor F:Comod-C— B into an abelian
category B can be factored through an exact functor F*: Ab (Comod-C)—
B (up to natural equivalence).

(2) Ab(Comod-C), the free abelian category over Comod-C, is
an AB4-category.

(8) The inclusion functor I preserves products and coproducts.

(4) The inclusion functor I preserves equalizers (coequalizers)
if and only if the equalizers (coequalizers) in Comod-C are coretrac-
tions (retractions).

(5) Ab (Comod-C) has sufliciently many projectives and injec-
tives.

As immediate consequences of this theorem we obtain the follow-
ing two theorems by applying the special adjoint functor theorem:

THEOREM 16 (Notation as above). The following statements are
equivalent.

(i) Comod-C is a coreflective subcategory of Ab(Comod-C).

(ii) The inclusion functor I: Comod-C — Ab (Comod-C) preserves
epimorphisms.

(iii) Ewery epimorphism in Comod-C is a retraction.

(iv) Ewvery object in Comod-C is projective.

THEOREM 17 (Notation as above). The following statements are
equivalent:

(i) The inclusion I:Comod-C— Ab(Comod-C) s an iso-
morphism.

(ii) Ewvery object tn Comod-C is injective.

(iii) Ewvery monomorphism in Comod-C is a coretraction. If
()-(iii) are fulfilled then Comod-C is a spectral category.

REMARK 18. If Comod-C is an abelian category then the
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statements of the above two theorems are equivalent. But if
Comod-C is not abelian then these conditions need not to be equivalent.

Proof of Theorem 15. We have to prove (2), (3), (4) since the
other statements were proved in [1].
(2 7,
@ Let ML m, L% My ie I, be a family of Ab(Comod-C)-
objects. Then

L »
w20 o 2

m{{ mlT Im{'
1!

VAL 1AL 1

is the coproduct of these family in Ab(Comod-C) as one easily
shows, where m!}, m; and m!, te I are the corresponding coproducts
of the objects Mi, M, and M, in Comod-C. Hence Ab(Comod-C) is
cocomplete, i.e., an AB-3 category. In order to show that
Ab (Comod-C) is an AB4-category we have to show that for any
family {f:;: (M;) — (N;)} of monomorphisms in Ab(Comod-C), the
morphism 1L f; is also a monomorphism.

LEMMA 19 ([1] Theorem 1.1 or [8] Lemma 6.1).
(1) The equalizer of

VA Y SN %

SN

N2 N2 N
18 given by
(, 5) ;)
’ 90, -1 ’ f 0 ”
M@SN———-> MPN' ——— NP M
|

j(l, 0) 1(1, 0) 1(0, 1)

M' —_— M N Mu

and the coequalizer by

N £, N %2 ., N~

1) 1) 1o

NI@M—____) N@ MII -_— N” @Ml’ .

5 (G-7)
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Since Ab(Comod-C) is an abelian category we obtain at omce the
Sfollowing criterium.

LEMMA 20. Let

wLw L m

() = J}" l¢ Jso”
’ g' g ”n
N — N— N
be a morphism in Ab(Comod-C). Then
1) (@) is @ monomorphism if and only if there are morphisms

Vv N — M, ¢ M— M
q¢": M" — M and +: N— M such that
fa+ 4P +q"-f=idy
and
f""lf\, +'1ﬁ-g'=0.
(2) (@) is an epimorphism if and only if there are morphisms

pN—> N’, p": N — N,

0. N—> M and 6: N' —— M" such that
gp+ "9+ @0 =idy
o"g + f0=0.

The construction of coproducts in Ab(Comod-C) and Lemma (20) 1
show immediately that 4b (Comod-C) is an AB4-category.

(3) Trivial.

(4) Let f: M— N an equalizer in Comod-C and assume that I
preserves this equalizer

Consider the following diagram

0— M—0

=] | |

00— N—0.

Then (f) is a monomorphism in Ab(Comod-C) if and only if there
exists a morphism ¢g: N— M such that g.f = id,, i.e., if f is a
coretraction (Lemma 20.1). In the same vein one shows by applying
Lemma 20.2 that f is an epimorphism if and only if f is a retrac-
tion Comod-C. This completes our proof.
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REMARK 21. (1) Ab(Comod-C) is an AB4*-Category. Let C
be a coalgebra. Then Comod-C is complete by Corollary 26. Now
in the same vein as above one shows that Ab (Comod-C) has products
which are the pointwise ones. Hence Ab(Comod-C) is an AB3*-
category. From the construction of products and the characteriza-
tion of epimorphisms by Lemma 20.2 we obtain that Ab(Comod-C)
is an AB4*-category.

(2) Ab(Comod-C) 1s, in general, not a Grothendieck category.
Take Z with the trivial coalgebra structure. Then Comod-Z is
isomorphic to Z-Mod, the category of abelian groups. Assume
Ab (Comod-Z) = Ab(Z-Mod) is a Grothendieck category. Since
Ab (Z-Mod) is an AB3*-category by 21 1, A4b(Z-Mod) is a C,-category
(Mitchell [12]), i.e., for any set (M,) of objects in Ab(Z-Mod) the
canonical morphism

is a monomorphism. Take now M, = Z for ne N. Then the canonical
morphism

00— UNyZ=Z" — 0

w=] b

00— TyZ—-2Z" —0

is the image of the canonical morphism m: Z*"™ — Z". Then I(m)
is a monomorphism in Ab(Z-Mod) if and only if the canonical
morphism m: Z' — Z" is a coretraction. Consider now the canonical
projection p: Z¥ — Z"/Z'™ and the element Z = (2"; ne N)e Z". Then
the image »(Z) is obviously divisible by every power of 2. Since
an element (z;; 7€) in Z* is divisible if and only if all components
v are divisible in Z we obtain that Z,|Z cannot be embedded in
a product Z7. Hence the monomorphism m:0— Z™" — Z¥ is not
split, i.e., no coretraction and therefore I(f) is no monomorphism in
Ab (Z-Mod). Hence A4b (Comod-Z) is not a Grothendieck category.
Next I will prove that Comod-C has a generator where C is an
arbitrary coalgebra. The existence of a generator in Comod-C where
C is flat was proved by Saavedra [15] 2.07. But his proof cannot
be generalized. The following proof uses Barr’s results in [3[ and
is in fact an imitation of his proof of the existence of a set of
generators in the category of coalgebras over a commutative ring.
A submodule Uc M of a module M is called a pure submodule of
M provided that for any module N UQN—ME N is a monomorphism.

ProprosiTION 22 (Barr [3] 1.8). Given UcCM there is an U*CM
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such that Uc U* such that U* is & pure submodule of M, and
such that

card (U*) < max (card (U), card (k), %) .*

THEOREM 23. Let (M, x> be a C-comodule, U a submodule of
M. Then there is a subcomodule M' c M such that UcC M' and

card (M') < max (card U, card k, W) -

Proof. Let (M, x> be a C-comodule. A k-submodule U of M
is called y-invariant if y(U)c+&® C (U C) where ¢: U— M is the
inclusions. Let U be a submodule of M. For each u € U choose a
representation

xw) = 3m @ C, .

Let U’ be the submodule generated by all m, and the elements of
U. Then UcUcM, x(U)=>r.m ®®Ceci®@CU ®C) and
card (U’) < max (card U, card k, ¥,).

Now iterate the above process in order to get a sequence

UcU'cU’'c...cU™C

such that y(U™)ci® C(U"* ® C). Define U = Unen U™ Then
U is a submodule of M such that Uc U such that U is y-invariant
and such that card (U) < max (card U, cardk, z,). Next we define
the following sequence of submodule of M

U,= Ur, when n is odd
and

U,=U,., when n is even,

where U}, is “the” pure submodule of M containing U,_, (— Pro-
position 22). Then let M’ =|J U,. Then M’'c M is a pure sub-
module of M which is y-invariant. Hence y(M')c M @ C and
(M’, %> is a subcomodule of (M, x>. The cardinality conclusion is
obvious.

THEOREM 24. The C-comodule whose cardinality <max(cardk, ¥,)
generate the category Comod-C. In particular Comod-C has a
generator.

Proof. Let f, g: <M, ¥y =N, yx» be two different comodule
homomorphisms. Then there exists an element me M such that

2 card (X) means the cardinality of the set X.
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f(m) # g(m). Then by Theorem 22 there exists a subcomodule M’
containing the submodule generated by m;
{mycM'cM. Furthermore card <m> <cardk. Hence card M' <

S
max (card k, %0) and f; # g.: (M, Yao) — (M, > =3 =3 ANy 2

EXAMPLE 25. Let C= Z@ Q/Z. Then the “set” of denumerable
Z @ Q/Z-comodules generates the category Comod-ZQ/Z.

Since Comod-C is cocomplete, cowellpowered and has a generator
we obtain by applying the special functor theorem [ef. [13] p. 114
Corollary].

COROLLARY 26. The category Comod-C 1is complete. Moreover
Comod-C ts locally presentable in the semse of Gabriel-Ulmer.®

This Corollary shows only the existence of arbitrary limits in
Comod-C but gives us no explicit description. Our next step will
be therefore to describe explicitly the limits. This was not known
even in the case where k is a field. We apply Linton’s techniques
of constructing colimits in an Eilenberg-Moore category over Sets
(cf. [14] Chap. 21)

Construction of limits in Comod-C 27. Let I be a small category
and D: I— Comod-C be a diagram. Let (lim UD, ®) be the limit of
UD in k-Mod and (lim(— @ C-U-D, 4) the limit of — ® CU-D in
k-Mod. If I is void then lim D is the zero comodule. Now let I be
nonvoid. Let 7: Idcomoac— — @ C-U be the functorial morphism
defined by

X = 0(KM, )M, 1) — MR C, MR 4)
M — M®c
| e
Mx
MRC——MRKICRC
Then there is exactly one k-morphism
»*:lim (UD) — lim (— @ C- UD)

such that the following diagram commutes:

UD ——2 Diag (lim UD)
U*v*Dl = lDiag (™)
~ ®C-U-D—Y- Diag (lim — ® CUD)

3 The set of generators in Comod-C is Ri-presentable-(Ulmer).



564 MANFRED B. WISCHNEWSKY

where Diag is the diagonal functor.

Let lim UD =M and lim — ® C-U-D = N. Then there exists
exactly one k-morphism @*: MQC— N such that — X Cxp =
4r-Diag (@*). We claim that »* is a monomorphism. Consider

Diag(f)
" Diag (M) 227, Diag (V)
Diag(g)

b=

vp -2, _gc.u.D

where f, g: X— M are k-morphisms with *.f = 7.g. Since (U, — ® C)
is an adjoint functor pair Uy is a coretraction and hence also
Uxn+«D. Thus we obtain @ Diag (f) = @ Diag (9) and hence f=g
since @ is a universal morphism.

Consider now the cofree comodules (M ® C, M® 4) and (N C,
N® 4> and the comodule homomorphisms

P*RCMUILNPQCMRPIC— NRC.

Diag (X)

*

Let (K, XK>—><M®C M®A>__?E_‘—’(N®C N® 4y be an

C-M®4
equalizer of W* Q C, P* Q M Q A) Then (K, Xx) is the limit of D
in Comod-C.

This is now shown in several steps (cf. [16] 21. 2. 10).

ExAmpPLE 28. Let C be a flat coalgebra. Then the finite limits
and in particular the equalizers in Comod-C are formed in k-Mod.
We want now to compute the products in Comod-C. Let {M,, ¥:);
1€ I, be a family of C-comodules. Denote by IIM, the product of
the underlying k-modules and by IIM,® C the product of the
k-modules M; ® C. Then we obtain two canonical morphisms »*
and @* defined by the universal property of IIM; Q C:

can

M, QC—1I1IM,R C

can

M, ——IIM!
and

can

M,®C— IM,®C

I can:®C ]90*
M,QC——{IM,)® C

with 2*((m,;) ® ¢) = (m; ® ¢) and p*(m,;) = (x:(m;)). Then the equalizer
of
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*

C
—(IM;RQC)RQC

(IM)®C
o*QC-(ITM,)Q4

is the prqduct of the family (M, x> in Comod-C, i.e.,

LM%y = {3 M@Ce(IM)RC S, (1m) ® Cy
= 3 5 (1 ® Cuu) @ Cro

finite (Cp)

where m, = (mf)ieI and 4C, = 3, Crwy @ Ciy With the comodule
structure induced by the comodule structure (ITM;) ® 4 and (IIM; Q
e(IIM;) ® C. The projections p, are given by the following assign-
ments.

pe I (M, x> — (M, %> Py (mf) ® C, — &(Cy)-m! .

MO inite

Let us now consider the functorial morphism (functorial in C)
M k-Mod (M, N @ C) — k-Mod (C* ® M, N)

defined by Mf)(e* @ m) = (1 Q ¢*)f(m) where C* = k-Mod (C, k). If
C is a coalgebra then C* is a k-algebra with the multiplication

fxf'(c) = %f(cu))’f’(c(a))

and unit e(c) = e(¢). (cf. [14]) Let C be a coalgebra and {M, y: M —
M® C) a comodule. Then M is a C*-left module with multiplica-
tion: M(y): C* Q M — M. The assignments
A: Comod-C —— C*-Mod
(M, 2y —— <M, M)y
f—f
define a functor (cf. [14]).

THEOREM 29. \:Comod-C— C*-Mod is comonadic. In particular
N has a right adjoint.

Proof. Since Comod-C is cocomplete, cowellpowered and has a
generator, A has a right-adjoint if and only if \ preserves colimits
(special adjoint functor theorem). Let

(M, 7> — (eolim M,, 7>

be a colimit diagram in Comod-C. Then \(%): C* ® colim M, —
colim M, is a colimit of (M, M(y:)), 1€ I, as one easily computes.
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Hence ) preserves colimits and thus has a right adjoint. Next I'll
show that \ creates equalizer of \-contractible pairs. Let f, g: {4,
Yo 2<{B, Xs» be a pair of \-contractible Comod-C morphisms and
m: K— A be an equalizer of f, g: {4, M) = (B, M¥z)) in C*-Mod.
Then there exist C*-module homomorphisms A: {B, M¥s)} — {4, M¥.))
and k: {A, My.)) — K such that the following diagram commutes:

A———A
R
m‘ s Im
73

Since functors preserve equalizers of contractible pairs, K iZuﬁljB

g
is an equalizer of the contractible pair (f,g) in k-Mod. Since
U: Comod-C — k-Mod is comonadic, K carries a comodule structure

S
Zx such that (K, yx> ﬁ»(A, x> = (B, %z is an equalizer diagram in

g .
Comod-C. Hence M\ creates equalizers of \-contractible pairs and
hence is comonadic.

REMARKS 80. (1) The fact that M\ creates equalizers of X-
contractible pairs follows also from the following:

LeEMMA. Let f, g4, %> =B, s> be a pair of comodule homo-
morphisms and K ﬂA:B the equalizer of f, g in k-Mod. If m is

g
a coretraction in k-Mod then K carries a comodule structure Xg
such that

m f
(K, tx) — <A, X0 = <B, Isy
g

1s an equalizer diagram inm Comod-C.

Let m be an equalizer of a \-contractible pair f, 9. Then m is
a coretraction in k-Mod and hence an equalizer in Comod-C, i.e., )
creates equalizers of M\-contractible pairs.

(2) The fact that ) is comonadic follows immediately from the
following Dubue-triangle
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Comod-C —— C*-Mod

where U and V are the underlying functors. Since U and V are
comonadic and Comod-C has equalizer, )\ is also comonadic (cf. [20]
Proposition 6.11).

() If C is finite (= finitely generated and projective) then
A: Comod-C — C*-Mod is an isomorphism of categories (cf. [14]).

The next proposition solves the problem of the existence of free
comodules i.e. answers the following question: For which coalgebras
C does the forgetful functor V: Comod-C — Sets have a left-adjoint?

PrOPOSITION 31. The following statements are equivalent:

(i) The forgetful functor V: Comod-C — Sets has a left-
adjoint.

(ii) C 1s finite i.e. finitely generated and projective.

(iili) — @ C: k-Mod — k-Mod preserves limits.

(iv) a:Comod-C-— C*-Mod has a left-adjoint.

(v) U:Comod-C— k-Mod preserves limaits.
If one of these conditions is fulfilled then \:Comod-C— C*-Mod is
an isomorphism.

Proof. The equivalences (i) — (iii) — (iv) — (v) are categorical
routine. The equivalence (iii) — (ii) follows from the well-known
fact that — & C preserves limits if and only if C is finitely presented
and flat or equivalently if C is finitely generated and prejective. If
one of these conditions is fulfilled then X is an isomorphism by
(30.3).

Description of the free C-comodules 32. Let C be a finitely
generated and projective coalgebra. The above proposition gives us
the following explicit description of the free C-comodules: Let X be
an arbitrary set. Then the free C-comodule F'X generated by X is
given by FX = @, C* where C* has the “canonical” C-comodule
structure.

COROLLARY 33. Notation as above. The functor \: Comod-C —
C*-Mod 1s an isomorphism if and only if C is finitely generated
and projective.

Next we consider factorizations in Comod-C. Let us first recall
some of the basic notions and propositions (cf. [20]). Let A be a
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category. For two A-morphisms ¢: A— B and m:C— D we write
e | m if every commutative diagram

AR

|4
CTD

can be made commutative by a unique morphism w: B— C. Let P
be any class of A-morphisms. Then p' resp. p' shall denote the
following classes of A-morphisms.

p' ={e;e| m for all me P}
p' = {m;e| m for all ¢c P} .

A pair (E, M) of classes E and M of A-morphisms is a prefactriza-
tion in A if E=M" and M= E'. A prefactorization (&, M) is
called a factorization in A if every morphism f in A is of the form
f=m-e with me M and ec E. A factorization (&, M) is proper if
every e¢c E is an epimorphism and every m e M is a monomorphism.
Hence a proper factorization on A is the same thing as a bicate-
gorical structure in the sense of Isbell. We say that a category A
has a M-factorization if A has a (M', M)-factorization. Let K and
L be categories with factrizations M, resp. M,. A functor F: K— L
is said top reserve My-factorizations if F(My)c M, and F(M{)c M, .
F is said to reflect M,-factorizations if F~(M,) My and F~'(M/)cM{.
Let Hyc Mor K with Iso (K)cHy and Hy Iso(K)CHy. A functor
F: K— L is said to create Hy-factorizations from M-factorizations
if for all fe Mor K with

Ff = My, ’I’I’LLG ML, 6L€ MLT

there is a unique factorization f = mg-.ex in K with F,x = my,
Fex = €L, mKGHK, GKGKT.

PROPOSITION 34. Let K be a cocomplete, cowellpowered category.
Then K has an (epi, extremal mono)-factorization i.e., a factoriza-
tion (E, M) where E is the class of all epimorphisms and M is the
class of all extremal momomorphisms (Isbell-Kennison).

Hence the category Comod-C has at least one proper factorization.
ProposITION 35. Let (E, M) be a oproper factorization in

Comod-C. Then the following statement are equivalent.
(i) The underlying functor U:Comod-C — k-Mod preserves the
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Sfactorization.
(ii) U 1is exact.
(iii) C is flat.

Proof. Since (ii) and (iii) are equivalent by Proposition 8 and
since the implication (iii) — (i) is trivial we have only to prove (i)—
(iii). Let E, resp. M, be the class of all epimorphisms resp. mono-
morphisms in k-Mod. Since U preserves the factorization and U
reflects isomorphisms we obtain that ¥ = U%(H&,) and M = U '(M,).
Since U(F)C E, and — Q) C is right adjoint to U we get (M,) ® Cc M.
Hence we get for the functor — & C: k-Mod — %k-Mod

(M) ® C = U(— ® C)M,) (M) < M,

i.e., — X C preserves monomorphisms.

COROLLARY 36. The wunderlying functor U:Comod-C— k-Mod

creates factorizations from KE,.-factorizations in k-Mod if and only
if C is flat.

Proposition 35 shows that, if C is not flat, then an arbitrary
C-comodule homomorphism can not be factorized through a surjec-
tive comodule homomorphism and an injective comodule homo-
morphism. In particular the canonical (epi-mono)-factorization of a
comodule homomorphism in %k-Mod cannot be lifted to a factorization
in Comod-C. In the sequel (K, M) shall always denote the proper
factorization (epi, extremal mono) on Comod-C. Words as epimor-
phism, monomorphism, generator, wellpowered ... are used in a sense
relative to (&, M).

ProprosITION 37. Comod-C ts wellpowered relative to the factori-
zation (epi, extremal mono).*

Proof. In the same vein as the proof for Proposition 10.6.3
in [16].

For the rest of this paper we will use the property that the
category k-Mod is a symmetrical monoidal closed category with
respect to the tensor product, and that Comod-C is an enriched
category over k-Mod. In the following we will study the left
adjoints of the k-Mod-representable functors ecalled tensors and
cotensors. They provide a characterisation of certain constructions
which is not available in an ordinary set based approach. Cotensors
will play an important role in duality theory (i.e. Gelfand theory)

* Comod-C is even wellpowered with respect to all monos.
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as it will be shown in part II of the present work. We use the
language in [6].

Comod-C is a k-Mod-category. The internal Hom-functor [, ]:
Comod-C° x Comod-C — k-Mod is gived by [M, N] = Comod-C(M, N).
The pair of adjoint functors Comod-C > k-Mod is a pair of k-Mod-
functors. In the sequel we call k-Mod-functors k-linear functors.

PrOPOSITION 38. The category Comod-C 1is temsored 4.e. for
every k-module M and every C-comodule X the functor Comod-C —
k-Mod: Y  k-Mod (M, Comod-C(X, Y)) is representable over k-Mod.

Proof. Let Meck-Mod and Xe Comod-C. The MY X is a C-
comodule. The rest follows from the canonical k-linear isomorphism

Comod-C(M ® X, Y) = k-Mod (M, Comod-C(X, Y)).

COROLLARY 39. The cofree k-linear functor — & C:k-Mod —
Comod-C has a k-linear right adjoint functor represented by the k-
linear functor Comod-C(C, —).

PROPOSITION 40. The category Comod-C s cotensored i.e. for
every Me k-Mod and Xe Comod-C the fumctor Comod-C°® — k-Mod:
Y+ k-Mod (M, Comod (Y, X)) is representable.

Proof. Since Comod-C is a tensored category Comod-C is
cotensored if and only if for every k-module M the k-linear functor
Fy: M@ —:Comod-C— Comod-C has a k-linear right adjoint. Let
N® X be a tensor with Nek-Mod and XeComod-C as above.
Then Fy(NRX)=MQOQ(NRQX) =2 NQMRX) = NQF,(X). Hence
F, is a tensor preserving functor in the sense of [6]. Since F,
preserves colimits, F,, has a right adjoint by the Special Adjoint
Functor Theorem. Since F, preserves tensors the right adjoint
Comod-C (M, —) is a k-linear functor and the representation Comod-C
(X, Comod-C (M, X)) = Comod-C(M ® X, Y) = k-Mod (M, Comod (X, Y))
is k-linear.

COROLLARY 41. Comod-C is k-Mod-complete and k-Mod-cocomplete.

Let f:C— C’ be a coalgebra morphism. Then f induceds a
functor f*:Comod-C — Comod-C’ by the assignment (M, x,)+—
(M, 1@ fAx)- Then f*is obviously a k-linear functor. By [15] 21.2.1
the mapping f+ f* induces a Dbijection between Coalg (C, C') and
the “set” of all functors @: Comod-C — Comod-C’ with U, = U,,®.

PRrOPOSITION 42. Let f: C— C’ be a coalgebra morphism. Then
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1) f* preserves tensors.
@) f* has a k-linear right adjoint f..

Proof. The assertion 1 is trivial. Since f* preserves colimits
it has a right adjoint by the Special Adjoint Functor Theorem.
Since f* preserves tensors the right adjoint is k-linear.

Description of the functor fi 43. Let M be a C-right comodule
and N a C-left comodule. The tensor coproduct of M and N under C
denoted by M ®° N is given by the following equalizer digram in
k-Mod.

MN— MINT_———SMKRKICKRXN
My
Then if f: C— C' is a coalgebra morphism between flat coalgebras
C and C' the functor f,:Comod-C’— Comod-C is given by the
following assignment f.(M, ¥x) = (M Q° C, 1, @° 4).

Final Observation 44. In the same vein as I studied the category
of comodules for a fixed coalgebra one can study the category
Comod of all comodules i.e. pairs (M, ¥u), C) where (M, )x) is a
comodule over C. One obtains similar results. The starting point
for the study of this category is the following theorem

THEOREM 45. The underlying functor
U: Comod — k-Mod x k-Coalg: (M, yy), C)+—— (M, C)

18 comonadic.

This note was written during my visit to the University of
California at San Diego. I would like to thank in particular
Professor Helmut Rohrl for his hospitality and the stimulating dis-
cussions on this paper. Furthermore I am indebted to Professor
Bodo Pareigis for stimulating the study of comodules over an
arbitrary coalgebra.
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