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Let w(jc),be the principal function for the set of all
composite nonnegative integers and let Dw denote its canonical
extension to the isols. M. Hassett proved in Comp. M. 26
(1973), as an application of a very general theorem, that if A is
any T-regressive isol then DW(Λ) is a regressive isol that is
prime. The present paper contains a number theoretic proof of
the following property: if Y is any infinite multiple-free re-
gressive isol then DW(Y) is a regressive isol that is prime.

1. Preliminaries. We will assume that the reader is familiar
with the main results given in [1], [2] and [4]. We use the notation of
[2]. W will denote the set of all composite positive integers
4,6,8, . The principal function of W will be denoted by w(x) and Dw

will denote the canonical extension of w(x) to the isols. Let A be any
regressive isol. Then, from results in [1], the value of DW(A) is a
regressive isol, and, if A is infinite then DW(A) is also infinite.

LEMMA 1. Let A be an infinite regressive isol. Then there exist
infinite regressive isols U and V such that

(1) A+2=U+V, and

(2) DW(A)= U + 2V.

Proof. We will first show that increasing recursive functions u(x)
and v(x) can be defined such that

(3) x+2=u(x)+v(x), and

(4) w(x)= u(x) + 2v(x).

Define w(0) = 0 and u(0) = 2. Observe that for each number x, the
value of e(x) = w(x + 1)- W(JC) is either 1 or 2. Assuming that the
values of u(x) and v(x) have been defined, let u(x + 1) = u(x)+ 1 and
v(x + 1 ) = v ( x ) if e(x) = 1, a n d u ( x + l ) = u ( x ) a n d v(x + ί ) = υ ( x ) + l
if e(jc) = 2. It is easy to verify that u(x) and v(x) are increasing
recursive functions and satisfy statements (3) and (4). From (3) and (4),
and the Nerode metatheorem for such statements, it follows that

49



50 JOSEPH BARBACK

(5) A +2 = DU(A) + Dυ(A\ and

(6) D

DU(A) and DV(A) are regressive isols, since A is a regressive isol and
each of the functions u(x) and v(x) is increasing recursive. Also, each
of these isols is infinite. This fact follows by first noting that among the
numbers e(0), e(l), each of the values 1 and 2 will occur infinitely
often. Combining this feature with the definitions of the functions u(x)
and υ{x\ and with the way in which the canonical extension of a
recursive function can be represented as an infinite series of isols (cf. [1]),
it follows that both Du (A) and Dv (A) are infinite. If we let U = Du (A)
and V = Dυ(A), then the desired result of the lemma is obtained.

Let - denote the function that is the greatest integer obtained

when the number x is divided by 2. Note, L is an increasing recursive

function. Therefore its canonical extension to the isols, written as - ,

will map regressive isols to regressive isols.

LEMMA 2. For all numbers d, m and n,

LEMMA 3. For all numbers m,

Proofs for each of these lemmas is easy to obtain and will be omitted.
Because the functions that appear in their statements are increasing
recursive, it follows that each of the lemmas has an analogue that is true in
the regressive isols (when the recursive functions are replaced by their
respective canonical extensions to the isols). We therefore have, for all
regressive isols D, M and N,

(7) 2D = M + N - D = [ ^ ] + [ N

2

+ 1 ] , and
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// X is an infinite regressive isol, then L~ is also an infinite regressive

isol. This fact follows by observing that in the infinite series representation

of 9 the e-difference function associated with L will be positive
L ^ J L Ĵ

infinitely often.

REMARK. Later, in the proof of the main theorem, we will apply the
representations given in Lemma 1 and the features expressed in (7) and
(8). In addition, we will also use the cancellation property for isols,
given by Dekker and Myhill in [5, Theorem 40], which states that if A
and B are any isols, then

(9) 2Λ ^ 2B -» A ^ B.

Statement (9) is applied later just in the special case that both A and B
are regressive isols. We would like to show that this special case of the
cancellation property may be obtained from (7). Observe first that
Γ2xl

~ = x is an identity that is true for all numbers x. Therefore also,

[2X1
^ = X is an identity that is true for all regressive isols X. Assume A

and B are regressive isols and that 2A ^ 2B. Then there is an isol T
such that 2A + T = 2JB, and, in view of [4, P23 and P24], we may assume
that T is a regressive isol. If we now combine these facts with (7), then
the cancellation property in the special case A and B are regressive isols
may be obtained in the following way:

2A ^ 2B -> 2A + Γ = 2B

_ Γ2A1 ΓΓ+11
- U W 2 J

-> A S B .

2. Multiple-free isols and the main theorem. An in-
finite isol Y is called multiple-free if for every isol £, 2B ̂  Y implies B is
finite. Multiple-free isols were introduced and studied in [5]. An
example of an infinite multiple-free isol that is regressive appears in
[3]. Note that if Y is multiple-free and A is any infinite isol with A^Y,
then A is also multiple-free. Prime isols were introduced in
[5]. Because any isol that is a predecessor of a regressive isol is also
regressive, it is possible to characterize regressive isols that are prime in
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the following way: a regressive isol P is prime if it is not possible to factor
P as P = (X + 2)(Y + 2), for any regressive isols X and Y.

THEOREM. Lei A be an infinite multiple-free regressive isol Then
DW(A) is an infinite regressive isol that is prime.

Proof. Since A is an infinite regressive isol, it follows that Dw (A) is
also an infinite regressive isol. Note that, from Lemma 1, (1) and (2), it
follows that

(10) D W (A)+t/ = 2(A+2),

where U is an infinite regressive isol. To show that DW(A) is prime, let
us assume otherwise.

Case 1. DW(A) = 2Y, for some infinite regressive isol Y. If we
then substitute in (10), we obtain

(11) 2Y+£/ = 2(A+2).

Therefore 2 Y g 2(A + 2) and also, from (9), Y ^ A + 2. If we now solve
in (11) for [/, we obtain

ί/ = 2 ( A + 2 - Y).

Hence 1/ is an infinite regressive isol that is not multiple-free. However,
from (1), U is a predecessor of A + 2. Since A is multiple-free, A + 2
will be also. But then 17 is multiple-free.

2. DW(A) = (3 + S) Y, for some regressive isol S and infinite
regressive isol Y. Beginning with the given representation of DW(A),
and then successively applying the statements (10), (7), and (8), gives

Dw (A) = (3 + S) Y -> 2(A + 2) = 3 Y + S Y + (7

"SY+C/+Π•IVW' ^ — i /-» i i Λ

Therefore,

(12) 2 U ] Si A+2.
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Since Y is an infinite regressive isol, L~ is also. From (12), we obtain a

contradiction to the multiple-free property of A 4- 2.

By these two cases, we may conclude that DW(A) is an infinite prime
regressive isol.
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