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The space H” (A ) is a generalization of the Hardy space H”
for functions analytic on an annulus A. This paper shows that
composition operators are bounded operators on H”(A) and
obtains an upper bound on the norm of the operator. The space
H?*(A) is given a Hilbert space structure and those composition
operators that are in the Hilbert-Schmidt class of operators on
H?*(A) are characterized in terms of integral properties of the
inducing function.

1. Introduction. If H is a space of functions analytic on a
region R, and if ¢ is an analytic map of R into itself, the composition
operator C, on the space H is defined by C,(f)=Ffc¢. In recent
articles composition operators have been studied on various function
spaces including the Hardy space H” and the Bergman space A°. See,
for example, (2), (4), (7), and (8). In all these spaces the underlying
region of analyticity was the unit disk. In this paper we show that
composition operators form bounded operators on the space H”(A),
0 < p <, a generalization of the Hardy space which consists of functions
analytic on an annulus. In addition, a characterization of those compo-
sition operators which form Hilbert-Schmidt operators on the Hilbert
space H*(A) is derived.

2. Boundedness of composition operators. A well-
known generalization of H?, 0 < p <o, was given by Rudin in (5). Forr
in (0,1) he considered the linear space of functions f analytic on
A =(z:r<|z|<1/r) with the property that |f|* has a harmonic major-
ant on A. He showed that for p = 1 this space is a Banach space under
the norm ||f||, = (u(1))"”, where u is the least harmonic majorant of
[fI. When 0<p <, this space is an F space (i.e., a complete transla-
tion invariant metric space) when given the metric d(f,g)=|[f — gl

Another generalization for p = [ was introduced by Sarason in (6) as
the space of functions f analytic on A with bounded integral means
M,(f.r). He showed that such functions have nontangential limits
almost everywhere on the boundary and that the space is a Banach space
under the norm

”f”p = (My(f, r)+ MA(f, 1/r))"".
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In (1) this author has shown that for 0 < p <1 this same limitation on
M, (f,r) defines an F space under the metric d(f,g)=|f— g5

That these spaces are the same and that the topologies are equiva-
lent follows by considering a third space. If HE is the subspace of H”
consisting of those functions which vanish at zero, then H? @ Hf is a
Banach space (p = 1) under the norm

I )l = (Ma(f, 1)+ M=(g, 1))

Again when 0 < p <1, the space is an F space using the pth power of this
expression as the metric.

For a function f analytic on A we write f = f,+f, to indicate its
Laurent decomposition chosen so that f; is analytic on lz [<1/r and f,is
analytic on |z |>r, with fy(®)=0. We also define fy(z)=fur/z). It
can be shown (see (1) or (3)) that the map (fuf)—=f=fi+fis a
continuous, linear, one-to-one map of H” @ H} onto either Rudin’s
space or Sarason’s space. By the Open Mapping Theorem, the inverse
is continuous; therefore, all three spaces are topologically equivalent.

We choose Rudin’s description as our basic definition of the space
H?(A) and establish the boundedness of eomposition operators on
H?(A).

THEOREM 1. If ¢: A — A is analytic function and if we define the
operator C,(f)=feo¢ for f in H?(A), 0<p <o, then C, is a bounded
operator on H?(A). Furthermore, if p =1, the norm of the operator is
dominated by

1/p
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where o(1)=w = |w|e", —m <t=m and q = —logr. Inparticular we
note the following cases:

(@) If e(1)=1, then |C,||=1.

(b) If le(1)|=1, then |C,|= eV = ™) < oo,

(c) If o(1)>0, then

1/p

1 + tan (% [log]wH)

1—tan <£]log!wl’>
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For composition operators on the F space H?(A), 0 <p <1, these
same estimates, raised to the power p, provide estimates on the operator
norm.

Proof. Let f be in H?(A), p=1, and let u denote the least
harmonic majorant of |f|? on A. Thus |f(e(2))f Su(e(z))=
(u°@)(z). Since u ° ¢ is a harmonic majorant of | f o ¢ |” we know there is
a least harmonic majorant and that fo¢ is in H?(A).

To show that C, is bounded it suffices to produce a constant
K = K(¢) such that u(¢(1))= K - u(1) for all positive u harmonic on
A. We determine such a constant by considering a mapping Q utilized
by Sarason in his study (6) of analytic function spaces of the annulus.

Let Q(z)=exp[(—ig/m)log((1+z)/(1—z))], where q= —logr,
and the imaginary part of the logarithm has values between — o and
a. The function Q maps the unit disk U onto A in many-to-one
fashion. The upper half-circle (e*: 0 <s < 1) is mapped, or “coiled,”
onto the outer boundary of A, while the lower half-circle (e*: 7 <s <
27) is mapped onto the inner boundary of A. The origin z =0 is
mapped to the point 1 in A. Furthermore, if w is in A, the set Q7'(w)
lies on a circular arc in U with end-points z = +1 and z= —-1. In
particular, the diameter of U given by —1< 2z < +1 is mapped onto the
unit circle.

We write w =|wle" = ¢(1), with —7 <t=m, and consider a
Poisson representation for any s in Q~'(w), and for any p <1:

(W)= (> 0)(s) = Q—%f Re {f)’-}{f} (u°Q)(pe")dt.

Therefore by the mean-value theorem for functions harmonic in U,

u(w) = ("—*—Lsi> - u(Q(0)).

p—Is|

Furthermore, Q(0)=1, so that if we let p tend to 1, we have

ute) = (FH2) vy,

1-{s|

Since this argument holds for any s in Q 7'(w), it is possible to choose the
constant K above as

K=inf(l+’sl> _ l+infls|

1-|s]| 1-inf|s|’
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where the infimum is taken over all s in Q7'(w). The problem is
reduced to determining this infimum in terms of w = ¢(1).
We see next that if Q(s)= w the definition of Q yields

L_ i tan(g2),

B = ;—Tlog[|wle“’+2k"’] = glog(|w|)+i§(t+2k77)’

for some integral value of k. We shall denote this expression for 8 by
B = A +iB. With this simplification we can write

tan (A /2)+tan(iB/2)
1—tan(A/2)-tan(iB/2)

tan(| A |/2) + tanh (| B|/2)
1—tan(|A |/2)-tanh(| B|/2)

|s| = tan(B/2) =

A

and this last estimate attains its minimum when k =0. Hence, we can
write K as

1 —tan(|A]/2) tanh (| B|/2) + tan(| A |2) + tanh (| B|/2)
1—tan(]A |/2)-tanh(|B|/2)—tan(] A |/2)—tanh(|B|/2)"’

where we have chosen k = 0. This can be written as the norm estimate
stated in the theorem.

For the special case (a) we note that K can be chosen as 1, so that
|C.|I=1. But ||C,|[=1, since any constant function has 1 an an
eigenvalue.

For case (b) the general estimate reduces to e’ which is
dominated, independent of the inducing function ¢, by the value
e ™) < o0,

For case (c) note that if ¢(1)>0 then ¢ = 0; therefore, the general
estimate reduces to the one desired.

3. Hilbert—Schmidt operators on H?(A). The space
H?*(A) is a Hilbert space under the inner product

1 2 - 1 2m
(f.g)= P J:] fe"/r)g(e"/r)dt +2—;J; f(re")g(re")dt

e

= > r¥ab, + i r*a,b,,

—
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where a, and b, are the Laurent coefficients of the functions f and g,
respectively. With this inner product the norm of the space is given by,

Ifll= [M3(f, )+ M3(f, 1/r)}
= [2 (r > +r")|a, !z]é'

This norm is the one introduced by Sarason (6) and, as noted above, is
topologically equivalent to Rudin’s choice of norm.

Recall that on operator T on an infinite dimensional Hilbert space is
called a Hilbert-Schmidt operator if there exists an orthonormal basis
(g:) such that 2, || Tg, |F < and that convergence for one orthonormal
basis insures convergence for every orthonormal basis. An orthonormal
basis for H*(A) is given by

g.(z)=z"(r' " +r*)? n=0,+1,+2 ---.
The question of whether a composition operator on the Hilbert space
H?*(A) is Hilbert-Schmidt can be answered by testing the proximity of

the function values to the boundary of A in the following way:

THEOREM 2. The operator C, is Hilbert—Schmidt on H*(A) if and
only if each of the following four integrals is finite:

[T a-rie@mbra, [T deermi-rya

[Ta=rieeeniyia, [T deten-ryd

Proof. First note the following inequalities:
) Itn<0, r"=r+r"=2rn
i) fnz0, r=sr™+r"=2r7,
Now using the orthonormal system (g,), we can compute

27 21 Colg B =27 S [lg.(e)lE
=3 [ dotermprio + oy

3 [T e te i+ vy
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If we divide this into four summations and use the inequalities above, we
see that it exists if and only if the following sum does:

©

|7 aleermiydr+ [T e iy

n=0 n=1

+J;2”§ (r,(P(ren)l)Z"dt_}.Lz"Zl (r/‘qo(’e")l)zndt-

Since r < |¢@|<1/r, we can interpret this sum using the Taylor Series
expansions for 1/(1—z) and z/(1—z). These integrals will exist if and
only if each of the integrals in the theorem exist, that is, if and only if C,
is a Hilbert-Schmidt operator on H*(A).

CoroLLARY. The following are equivalent:

(a) C, is Hilbert—Schmidt on H*(A);

(b) C, is Hilbert—Schmidt on H*(A), for ¢(z)=r/¢(2);
() G is Hilbert—Schmidt on H*(A), for 0(z) =¢(r/z).
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