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Throughout this paper R will denote any associative ring
(without necessarily 1) with a fixed subring A such that for each
element x of R, there is a polynomial g.(¢) (depending on x)
having integral coefficients so that the element x — x° - g(x) must
be in A, say, R is a co-radical extension of the ring A, or R is
co-radical over A. In this paper it is shown that if A is PI (ring
with polynomial identity) then so must be R.

Prime examples of co-radical extensions are the rings R which are
co-radical over their centers Z = Z(R) studied by 1. N. Herstein, and the
algebras R over finite fields where A = A (R) is the subring generated by
both the nilpotent and transcendental elements.

Essential to the paper will be both the techniques used by B.
Felzenswalb, and by Herstein and L. Rowen in the study of the radical
situation, that is, for each x € R, x"® € A, and a recent commutativity
result asserting that for any ring R the centralizer of the subring A (no PI
assumption) must be precisely the center Z = Z(R) of R.

Conventions. The center of the ring R is denoted by Z=
Z(R). The centralizer of the subring A in the ring R is denoted by
Cz(A)(={a,a € R, xa = ax, all xeR}). All polynomial g, (t) considered
here are polynomials with integer coefficients.

LemMma 1. All nilpotent elements of the ring R must be in A (no
assumption on char (R)).

Proof. Given any x € R and any k = 1 we claim that we can find a
polynomial with integer coefficients, g.(f), so that x —x* - g (x)€
A. If k =1, the assertion is just our basic assumption. If true for k,
then the assertion is true for k +1. 1In fact let x, = x* - g, . (x). We can
find g,(t) so that x, —(x.)’- gi(xx) € A. Combining these relations we
obtain x — ¥+ g1 (x) € A, where g1, (1) = g2.(t) - gi(t¥ - g (2)). Itis
now evident that if x is nilpotent, then x € A.

LEmMMA 2. Let a,b,x,y ER with xy =0 and aAb=0. Then
ayRxb =0.

Proof. Itis clear that yRx is nil, so, by Lemma 1, must be contained
in A. Thus ayRxb C aAb =0, and ayRxb = 0 follows.
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LEmMMA 3. Suppose that R is either torsion-free or has characteristic
p, where p is a prime number. If R has no nilpotent ideals, then A has no
nilpotent ideals.

Proof. It suffices to show that aAa = 0 with a>= 0 implies a = 0.

Let x € R. Since x —x*-g(x)E A, a(x ~x?g(x))a =0. Amongst
all nonconstant polynomials h(t) (with integers or integers modulo p
coefficients) satisfying the relation

(axYah(x)a =0, some r=1,

choose one h(t) having least number of nonzero coefficients. Let
h(t)=ry+nt+ -+ nt* rn#0. We have for some r, (ax)a(h(x)—r)a
= (ax)ah(x)a — (ax)r.a’= 0. By the choice of h(t), r, = 0. Suppose that
k>1. For y=(r+rx+---+nrx*"a, ((ax)ax)y = (ax)ah(x)a = 0.
Setting z = (ax)ax, we get z -y =0. In view of Lemma 2, ayRza =0,
so, zayRzay =0; consequently, zay =0, that is, (ax)"aX
(ri+rx+---+rnx*Ya=0. Since ra*=0, this gives (ax)*'a X
(rx+ - +rx"Ya=0. If h(t)=rt+ - +rnx*", but r,#0, we get
then a polynomial with fewer number of nonzero coefficients, a con-
tradiction. We must conclude that r, = 0. Repeating eventually k —2
times, we see that h(t) = rt*, r. # 0, telling us that r, (ax) - ax*a = 0, that
is, (ax) - ax*a = 0. Choose k minimal for the relation (ax) - ax*a =0,
some r=1. If k=1, then repeating the argument above for z =
(ax)ax, y,= x*"a (zy, = 0), we get zay, = (ax)*'ax*'a, a contradiction.
We must conclude that (ax)axa =0, some r=1. From this ax is
nilpotent, all x € R.

Since aR is nil, xaR isnil. By Lemma 1, xaR C A,allx €ER. It
follows that RaR C A, whence aRaRa =0, so, (aR)’=0. From this
aR =0, and a =0 follows. With this the lemma is proved.

Our next lemma deals with the prime case. Here, again, the
assumption on char R is automatically verified. Since any prime ring R
has evidently no nilpotent ideals Lemma 3 yields that A must be also
with no nilpotent ideals, and it is now convenient to get the primeness of
the ring A. This is the

Lemma 4. If R is prime, then A is also prime.

Proof. Let a,b € A with aAb =0. We have abAab C aAb =0,
so, abAab =0, whence ab =0.

Let x € A. For some polynomial g, (¢), x —x*- g.(x) € A, whence
a(x —x*-g.(x))b =0. Amongst these nonconstant polynomials with
integer or integers modulo p coefficients, choose one h(t) with the least
number of nonzero coefficients. Let h(t)=ry+nt+---+nth
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rn#0. We have a(h(x)—r)b=0. By the choice of h(x), r,=
0. Suppose that k >1. Let y=(r,+rx+---+nrx*")b, and let z =
ax. We have zy = ah(x)b=0. By Lemma 2, ayRzb =0. Since R is
prime, ay =0 or zb = 0, which is to say, a(r,+r,x +---+nx*")b=0or
axb = 0. If axb = 0, then by the choice of h(t),ro=r,=---=r,=0.1f
axb# 0, then a(r,+rx+---+rnx*")b =0. Because ab =0, this gives
a(rx +-+- -+ nrx*"b = 0. By the choice of h(t), ry=0. All in all, we
have seen that if k > 1, then r,= r, = 0. Repeating enough times we get
that r,=r,=---=r_, =0, so that h(t)=rt* and hence rax*b =0.
From this ax*b = b = 0. Choose k minimum for this relation. If k >1,
setting z = ax*™', y, = xb we get z,y, = 0. Repeating the argument above
we see that ay, = axb =0 or z,a = ax*'a = 0. By the choice of k, k =1
necessarily. This means that axb = 0. Since this holds for all x € R,
a =0 or b =0 follows. The lemma is proved.
We are now in a position to show our final result.

THEOREM. Let R be a ring with a fixed subring A. If R is
co-radical over A (in the sense that x —x*- g(x) € A for all x € R, where
g(t) is a polynomial with integer coefficients depending on x) and if A
satisfies a polynomial identity of coefficients =1 of degree d, then R
satisfies a polynomial identity of coefficients +1 of degree at most d*.

Proof. First we reduce to the case where R has nilpotent
ideals. In factlet N be the sum of all nilpotent ideals of R. Since N is
certainly nil, N C A, follows (Lemma 1). Hence N satisfies the polyno-
mial identity in A. If we could prove that the factor ring R/N satisfies
the standard identity of degree d, we would be then done.

Our second reduction will be to show that if R is a prime ring as in
Theorem, then R satisfies the standard identity of degree d. The
reduction follows immediately from the well-known fact that if R has no
nilpotent ideals, then R is a subdirect product of prime rings. Summariz-
ing, the theorem reduces to showing that if R is a prime co-radical
extension of a PI-subring A of degree d, then R satisfies the standard
identity of degree d.

By Lemma 4, A is a prime PI-ring. By a well-known result, A
satisfies the standard identity of degree d. Perform the standard mul-
tilinear polynomial p(¢,,t,, - - -, t;) = [t,,- - -, t;] on by, b, - - -, b,, where the
b,’s are in the subring A generated by A and the center Z of R. Since a
typical element b in A is a linear combination of elements in A with
coefficients A integers or in Z, by the multilinearity of the polynomial
[, ta], we get [by, -, b ] =Z2_. . oAla., -, a,], so, A satisfies
the standard identity of degree d. Since R is evidently co-radical over
A, A is prime. This shows that without loss of generality A D Z

Let B={b,ba =ab, allac A}=Cr(A). Given any x €ER, we
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have x-x?-g(x)E A, so, b commutes with x —x’g(x). By [1,
Theorem 1], b€ Z, all b€ B. Thus Ci(A)=Z. In particular the
center of A is precisely the center Z of R.

Now the center of a prime PI ring is not trivial. Since A is a prime
PI ring, Z is then not trivial. Localize R with respect to Z* = Z —~{0}.
Let R be the rlng of fractions of R, let A be the expansion of A, and let B
be the expansion of Cr(A). Since we localized with respect to Z, the
center of A, it is known that A is a simple finite dimensional algebra over
its center Z=(Z-z7",2#0,z €Z). (Formanek, Posner). Let X =
x-z7€Cz(A), x ER. It is clear that x centralizes A, whence x €
Cr(A) = Z, which forces X to be in Z. Thus, again, Cz(A)=Z. Allin
all, A is a central simple finite dimensional algebra over the field Z, the
center of the over-algebra R R, and Cz(A)=_Z. It follows that R ~
A®:Ci(A)=AQ:Z=~A, and R satisfies the standard identity of
degree d. Hence R C R satisfies the standard identity of degree
d. With this the theorem is now proved.

To conclude let us observe that the transfer properties in Lemmas 2
and 3 can be reversed and established in the general set up (2 la C. Faith)
of algebras R over commutative rings with 1, in which, given any x € R,
x—x*-g(x)E A, where g,(t) is a polynomial over ®. But obviously
Theorem is false under this setting. What makes the case ® = Z, (the
integers) work is, as the reader has already guessed, that for such choice
of ® we have at our disposal the commutativity fact that if a € R
commutes with all x — x*- g.(x), x ranging over R, then a € Z(R) in, at
least, the prime case. Under the latter assumption, we can certainly
extend Theorem from rings to ®-rings R.
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