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Consider the equations in JR n, n ^ 2,

(*)

(I)

where

/(*)=

/ and
O(\x

Aφ=f
Δφ — b

+ b -Vφ

•Vφ

b are locally Holder continuous,
-), b(x)=O(\x ~σ\ σ, τ > l .

and
It is

as x j
shown that

i f θ ^ p < σ - l , there is a one-to-one correspondence between
entire C2 solutions of (*) whose gradients grow no faster than
O( |JC| P ) , and harmonic polynomials with gradients of the
same growth. For (I) therefore solutions whose gradients
grow no faster than O(\x\p) form a finite dimensional vector
space. These results for (I) give analogues to the concept of
"generating pairs" in pseudo-analytic function theory.

1. Introduction. In the case n = 2, (I) takes the form

(1.1) Ψxx + ψyy

 = bxφx + b2φy.

If we make the identifications w = ψx - iφy, A = (bι + ib2)/4, B =
(b{ - ib2)/4, then w satisfies the complex equation

(1.2) | | = Aw+Bw

where

d \ I o d \
~dϊ ~ 2 \~dx l ~dy) '

Thus (1.1) can be studied alternatively by considering the complex
equation (1.2), the solutions of which are known as "pseudo-analytic
functions," and for which an extensive theory has been developed (see
for example the treatments of Befs and Vekua in [1] and [8]). In
particular it is known that entire and bounded solutions of (1.2) form a
two-dimensional real vector space, and a basis for this vector space is
called a "generating pair." In dimensions higher than two the
reduction of (I) to a first order, complex equation- is no longer

127



128 GERALD N. HILE

feasible. However in the presentation here several features of the
two-dimensional treatment are retained, with the main essential step
being the establishment of a relation between solutions of (*) and
solutions of a prescribed integral equation.

Entire solutions of linear second order elliptic equations are
discussed by D. Gilbarg and J. Serrin in [4], and by A. Friedman in
[31. These results are stated in terms of the behavior of the solutions
themselves, whereas results here describe the behavior of the gradients
of solutions. Gilbarg and Serrin give a Liouville's theorem for elliptic
equations with principal part much more general than the Laplacian,
and with the coefficients of the first order terms behaving like O(\x I"1)
at infinity. The proofs of one or two of the results here, particularly
Theorem 8, could be shortened slightly by quoting results from
[41. Otherwise there does not appear to be much overlap between
that paper and this one. Friedman in [31 gives conditions under which
a rather general elliptic equation is known to have an entire and
bounded solution. Connections of his results with results here are
briefly described in section 3.

J. Serrin in [7] has developed Liouville-type theorems for non-
linear equations of the form Δ<p = f(x,φ,Vφ). His results are stated
in terms of the behavior of both the solution and the gradient of the
solution. He also gives a Liouville theorem for a special case of (I)
where b is no longer required to vanish at infinity but other restrictive
conditions are added.

Another generalization of the concept of generating pairs is given
in [51 by the present author with R. P. Gilbert. In this work an
analogue of pseudo-analytic function theory is developed for certain
elliptic systems of first order equations in the plane.

We briefly describe some function spaces. All functions are
presumed defined everywhere in JR". Let / map Rn into R. We say
/ E Cm if all derivatives of / up to order m are continuous. We say
/ E H, or / is locally Holder continuous, if for each compact set K in
Rn there exist positive constants M and β, 0< β ^ 1, such that for JC,

We say / E Ha if we may choose β = a for each compact set K. Let
p be a real number. We say /EJ3P if / is continuous and /(*) =
O(| JC |p) as j JC |—>oo. The space Bp is a Banach space under the norm

" 2B
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The space Bo consists of all bounded continuous functions in i?n.
If u is a vector valued function from Rn into Rn, we say u lies in

one of the above spaces provided that each real component of u is in
that space. We distinguish separately the space Bp(n), consisting of
real n-vector valued functions u = (uu ,un) with each component in
Bp. The norm in this space is described by (1.3) with / replaced by u,
and where we interpret |M(JC)| as the ordinary Euclidean norm of the
vector u(x).

2. Properties of operators. In this section we develop
properties of operators to be used later. We list as lemmas several
elementary consequences of known results involving potentials in Rn,
n^2. We denote the gradient operator by V = (du , dn), and the
Laplacian by Δ = dn + + dnn. The surface area of the unit sphere in
Rn is ωn, and dy = dyλ dyn represents n-dimensional Lebesgue
measure. If g is a real valued function in Rn, we define formally the
potential Sg by

(2.1) (Sg)(x)= {2_\)ωn jRn \x~y\2-"g(y)dy if ni=3

= 2^JR2

 los\χ-y\g(y)dy if n=i.

We denote by Tg the formal gradient of Sg,

(2.2) (Tg)(x) = ̂ - j R n φ^_ g(y)dy if n i= 2.

If u is a funct ion f rom JRn i n t o R n , u = (uu ••-,«„), w e define formally

(2.3) (Ru)(x) = ±( (X;y)'l(y)dy if n^2,
ωn JRn \χ-y\n y

where " " is the ordinary dot product for vectors.

LEMMA 1. // g E H Π B_σ where σ > 1, then Tg G C\ and in Rn

we have

(2.4) VTg = g.

Moreover, Tg is the gradient of some C2 function in Rn.

Proof The condition σ > 1 guarantees that the integral Tg
converges. For any fixed r, r >0, we write T= Tr + T'r, where
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(2.5)
<*>n

(On J\y\^r \X )> |

Similar decompositions hold for S and R. By well known results for
bounded domains (see for example [2], Ch. IV), Srg and Trg have
continuous derivatives of orders two and one, respectively, in the
region | x \ < r, and satisfy there

(2-6) V(Srg)=Γrg

Moreover for | x | < r we may differentiate under the integral and
obtain V (Trg) = 0, which together with (2.6) gives (2.4). To see that
Tg is the gradient of a real valued C2 function in i?", we write, for
r > 0, u = Trg + T'rg = Tg. Since u E C1, it is sufficient to show u
satisfies the system

dut _ du, _ 1 -j. -

Έi" dxt ' m-h n iϊj.

However TΓg satisfies equations of this form in the region | x \ < r, since
Trg = V(SΓg) in this region, and T'rg satisfies equations of this form in
the same region because we may differentiate under the integral.

The next two theorems are stated here and their proofs, being
mainly calculational in nature, are delayed until the last section.

THEOREM 2. If g E B-σ where 1< σ < n, then TgEHaΠ B^σ(n)
for any a in the range 0< a < 1, and

(2-7) | Γ g | U = i M ( n , σ ) | | g | _ σ .

If uE B-σ(n) where 1< σ < n, then Ru G Ha Γ) β,_σ for 0 < a < 1,
and

(2.8) \\Ru\l-* £M(n,σ)|| w | . σ

(M(n, σ) denotes a positive constant depending only on n and σ.)

THEOREM 3. // bEB-σ(n) where σ > l , ί/ien ί/ie operator P
defined by Pu = T(b u) is compact in the space Bp(n) for 1 - n < p <
σ - 1 .
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LEMMA 4. Let φ be a real valued function in Rn, φ E C2,
Δ φ E / / ! Ί J 3 _ σ where σ>l. Then there exists an entire harmonic
function ft, unique up to an additive constant, such than in Rn

(2.9) Vφ = Vft + Γ(Δ<p).

Proof By Lemma 1, T(Δφ) = Vφ for some function φ in C2, and

V (Vφ - Vφ) = Δφ - V T(Δφ) = Δ<p - Δφ = 0.

Thus φ - φ = h for some entire harmonic function ft, and Vφ =
Vft + Vι/f = Vft 4- Γ(Δφ). If there were two functions with the proper-
ties of ft, the gradient of their difference would be zero.

LEMMA 5. If φ E C\ Vφ E B-r(n) where τ > 1, then

(2.10) φ = c + i?(Vφ)

for some real number c.

Proof We use integration by parts to derive, for | x \ < r, e > 0,

-y.

= — I I +L
(ds = surface measure, v = unit normal pointing outward). On the
surface | y - j c | = €, v(y)= ~(y - x)l\y ~ x |, and after letting € ap-
proach zero we obtain

I Γ ίχ _ y \ . y
(2.11) Rr(Vφ)(x) = — ή \Γ~ <P(y)ds + φ u ) .

ω n J | y i = r \ x - y \ r
\y\ =

The integral on the right side of (2.11) is harmonic in the region
x I < r. As r approaches infinity, Rr(Vφ) approaches R(Vφ), and it is

easily shown that convergence is uniform on compact subsets of
jR". Thus the harmonic functions defined by the integrals in (2.11)
converge uniformly on compact subsets of Rn to some harmonic
function ft, as r approaches infinity, and we have the equation

φ =ft +R(Vφ).
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By Theorem 2, R(Vφ) vanishes at infinity. By applying elementary
estimates to the identity

(2.12) φ(x)=φ(0)+ Γ
Jo

(using VφEJB_τ(n)), we see that φ is bounded and hence h is
constant.

3. The nonhomogeneous equation. We consider the
two equations in Rn,

(*) Δφ = f+ b -Vφ

(**) u = Vq + Tf+T(b -u)

where q represents a harmonic polynomial. We formulate conditions
under which solutions of (**) correspond to gradients of solutions of

(*)•

THEOREM 6. Let b E H Π B-σ{n\ fEHΠ B_τ, where σ, r > 1. //
uEBp(n) where 0 S p < σ - l , then u is the gradient of some C2

solution φ of (*) if and only if u satisfies (**) for some harmonic
polynomial q with (degree q)^p + l.

Proof. If (pEC2 and satisfies (*) with VφEBp(n), then Δφ G
H Π B-ξ where ξ = min(σ - p, r). By Lemma 4, there exists an entire
harmonic function h such that

Vφ = Vft + Γ(Δ<p) = Vh + Tf+ T(b ' Vφ).

Since T(Δφ) vanishes at infinity (Theorem 2), we have Vh E Bp(n),
and /ι is a polynomial of degree no larger than p + 1 .

Conversely suppose u E Bp(n) and satisfies (**) for some har-
monic polynomial q, (degree q)^p + l. Then (f+b - u)EB-ξ9 £ =
min(σ-p,τ) . By Theorem 2, T(f + b - u)E H and hence uEH (by
(**)), b-uEH. By Lemma 1, T(f+b-u)EC\ V Γ ( / + 6 iι) =
f + b - u, and T(f + b - u) = Vψ for some function ι̂  in C2. Thus
M = Vg + V</f = Vφ where φ = q + ψ. Moreover, Δφ = Δ(q + ψ) = Δφ =
V Γ ( / + 6 u) = f+b u = / + 6 Vφ.

LEMMA 7. Lei b EH ΠB-σ(n\ fEHΠB-τ, where σ > 1, 1<
r < n. // φ ί5 α C2 solution of (*) whose gradient vanishes at infinity,
then Vφ 6B,. T (n).
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Proof. Since b Vφ E B_σ, /GB_ T , Theorem 2 implies Γ/ +
T(b-Vφ) vanishes at infinity, and in (**) (with w=Vφ) we have
Vq = 0. Thus

(3.1) Vφ = T(f+b Vφ).

If σ g T, then / + 6 Vφ E B_τ and by Theorem 2, Vφ E £i_τ(n). If
σ < r, we have f + b-Vφ E B-σ and Vφ E ̂ ^ ( t t ) , which gives
b - Vφ E β,_2<r. If 2σ - 1 ̂  T, then as before we have / + /> Vφ E B_τ,
VφEB,_ τ(n). If 2 σ - K τ , then f+b'VφEB^, VφEB2-2σ(n).
Continuing in this manner, we obtain b Vφ E f L ^ ̂ D for succeeding
integers /, until σ + / ( σ - l ) ^ τ , which then gives VφEJ3i_τ(n).

REMARK. One can show that Vφ E Bx-n(n) if r > n, and if T = n,
Vφ( t) = O(|x p"" log I JC I). These results rely on an extension of
Theorem 2 to the case σ ^ n, whose proof in the interests of brevity is
not included.

Finally, we discuss solvability of (*):

THEOREM 8. Let bGH Π'β_σ(n), fEHΠ £_τ, where σ, r >
1. If φ is a C2 solution of (*) wiίfc Vφ E Bp(n) where 0 ̂  p < σ - 1,
ί/ien ί/iere exists a harmonic polynomial q, with (degree Vq)^p, such
that Vφ - Vq vanishes at infinity. Conversely, for any given harmonic
polynomial q with (degree Vq) = m, m < σ - 1, there exists a C2

solution φ of (*), uniquely determined up to an additive constant, such
that Vφ E Bm(n) and Vφ-Vq vanishes at infinity.

Proof. The first half of the theorem follows from Theorem 6.
From (**) we have the representation

(3.2) Vφ =Vq + T(f+b Vφ)

for some harmonic polynomial q, (degree q)^p + l. Since /EB_ T ,
(b - Vφ)E Bp-σ, the quantity T(f + b -Vφ) vanishes at infinity. For
the "conversely" part, it is sufficient to show the equation (**) has a
unique solution in the space Bm(n) for any given harmonic polynomial
q with Vq E J3m(n), O^m <σ-l. Since TfEB^τ(n), and Bx-τ{n) C
Bm(n) for ra^O, and the operator P given by Pu = T(b u) is
compact in the space Bm(n), it is sufficient to show that the only
solution to the homogeneous form of (**) is the zero
solution. Suppose then that u E Bm(n), with 0 ^ r a < σ - l , and we
have u = T(b - u). Since b u E B-{σ-m) and σ - m > 1, T(b u) van-
ishes at infinity. For the special case n = 2, it is proved in [1],
pp. 59-64, making use of the similarity principle for pseiίdo-analytic
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functions, that u is identically zero. We assume therefore that
n ^ 3. We let u=Vφ, where φ is a C 2 solution of Δφ = b-Vφ
(Theorem 6). Applying Lemma 7 with / = 0, 2 < r < n, we conclude
Vψ E £_£ for some ξ, ξ > 1. By Lemma 5, ψ = c + R(Vφ) for some
real constant c. Since #(Vψ) vanishes at infinity φ has the limit c at
infinity. By the maximum principle the function φ - c is identically
zero, and hence u = Vψ = 0.

REMARK. Under the conditions of Theorem 8, there exists a
unique (up to an additive constant) C2 solution φ of (*) whose
gradient vanishes at infinity, occurring in the case Vq = 0. In [3] it is
shown that under the condition of Theorem 8, except with τ > 2, there
exists a unique solution of (*) vanishing at infinity for n ^ 3 . (In fact,
this result is proved for an elliptic equation with principal part much
more general than the Laplacian.) Lemma 7 shows that furthermore
the gradient of this unique solution vanishes at infinity. Indeed,
Lemma 7 guarantees in the case τ > 2 , n ^ 3 that Vφ E B-P(n) for
some p, p > l . By Lemma 5, φ has a limit at infinity and thus φ
differs by a constant from the unique solution vanishing at
infinity. (For the case n = 2, p > 2, the remark after Lemma 7
guarantees existence of a solution with Vφ E B-i(n), which with the
help of (2.12) leads to φ(x)= O(\og\x\). In [3] the existence of a
solution with this growth at infinity is also proved.)

4. T h e h o m o g e n e o u s equat ion . We assume throughout
this section that b E H Π B-σ(n) where σ > 1, and consider the
equation in Rn,

(I) Δφ = b Vφ.

The next theorems are immediate consequences of Theorems 2, 6, and
8 and the linearity of the equation.

THEOREM 9. // 0 ^ p < σ - 1, the collection of gradients of C2

solutions of (I) whose gradients are in Bp(n) is a finite dimensional real
vector space. This vector space is isomorphic to the space of gradients
of harmonic polynomials q in Bp+ι(n), and a one-to-one correspondence
between the two spaces is determined by the relation Vφ -Vq = O
(\x \~T) for some T, T > 0 . (If σ - p < n, then r = σ - p - 1.)

THEOREM 10. The collection of gradients of C2 solutions of (I)
whose gradients are bounded is an n-dimensional real vector space. A
one-to-one correspondence between this space and Rn is determined by
the relation, for y in Rn, Vφ - y = O(\x \~τ) for some r, τ > 0 , (If
σ < n, then r = σ - 1.)
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DEFINITION. For given bEHΓ)B-σ(n), σ > l , and given p,
0 ^ p < σ - l , we define G(b,p) as the real vector space of gradients
of C2 solutions of (I) whose gradients are in Bp(n).

DEFINITION. A generating set for G(b,ρ) is a collection of
elements in G{b,p) that forms a basis for this vector space.

We note that G(b,0) is the space of bounded gradients described
in Theorem 10. For the case n = 2, in the language of pseudo-
analytic function theory elements of this space are called generalized
constants, and a generating set is called a generating pair. If we let ex

denote the unit vector in the rth-coordinate direction in Rn, and
denote by φx a C2 solution of (I) whose gradient has the limit eι at
infinity, then clearly the set Vφu * ,Vφn is a generating set for
G(b, 0). In fact, if Vφ has limit γ = (γu , γn) at infinity, where φ is
a C2 solution of (I), then Vφ has the representation Vφ =
Σγ Vφ,. Note also that since Vφ,-—»ef at infinity, there exists a
neighborhood of infinity in jRn for which the set of n -vectors
(Vφ1)(x), ,(Vφn)(jt) is linearly independent at each point x in that
neighborhood. A natural question is whether the set (Vφi)(jc),
• * -y(Vφn)(x) is linearly independent at every point JC in
Rn. Equivalent formulations of the same problem are as follows:

(i) For fixed x in JRn, is it true that Rn = {Vφ(jc): Vφ E G(ί?,0)}?
(ii) If VφEG(b, 0) and Vφ vanishes at some point, is Vφ

identically zero?
For the case n = 2, the answer to these questions is affirmative, and
follows as a trivial consequence of the similarity principle for pseudo-
analytic functions. For n ^ 3 this function theory is not available, the
main hindrance being the lack of a suitable commutative algebra with
which to represent points in Rn. The next theorem gives an affirma-
tive answer to (i) and (ii) whenever the norm || b ||_σ is sufficiently small,
but for the more general case these questions remain unanswered.

THEOREM 11. // ||6||_σ is sufficiently small (the bound depending
on n and σ), and if φ is a C2 solution of (I) with bounded gradient,
then Vφ never vanishes unless Vφ is identically zero.

Proof By choosing σ smaller if necessary, we assume 1< σ < n.
We will prove the anwer to (i) is affirmative. If Vφ E G(fe,0), then
Vφ has the representation

Vφ = γ + T(b - Vφ) = y + P(Vφ)

for some constant n-vector γ. Let x be fixed in Rn. The condition
(Vφ)(x)=y leads to γ = y - F(Vφ)(x), and
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Vφ=y+P(Vφ)-P(Vφ)(x).

Thus it is sufficient to show that the equation u = y + Pu - Pu(x) is
solvable in BQ(n) for any y in Rn. For this purpose it is sufficient to
show that the mapping A given by Au = y + Pu - Pu(x) is a
contraction in the space B0(n). We have by Theorem 2, for w,

t?6B0(n),

\\Au - Aυ\\o ^ \\Pu - Pυ\\0+ \Pu(x)- Pv(x)\

^2M(n,σ)\\b (u-v)\\-σ

^2Λf(w,σ)|6||-σ||ιι-ϋ|o.

Thus we require 2M(n, σ

5. Calcu lat ions . In this section Theorems 2 and 3 are
proved. The presentation follows somewhat that of [1] for the case of
two dimensions. We designate generic constants by M( ), where
inside the parenthesis are listed the entities that determine M.

LEMMA 12. Let x and y be elements in an inner product space
(either real or complex) with inner product x y, and | x |2 = x x. If
v>0, \x\ ̂  \y |, then

(5.1) x x ' - y | y Π ^

and if x ̂  0, y / 0, then

x y
(5.2) \χ-y\

I JC I — | y |

Equality holds in both cases, except when x or y is zero, only when y is
a positive multiple of x.

Proof. If v > - 1 the right side of (5.1) is positive, and it is
equivalent to show

xx -

We expand each side to obtain

y + yχ)+\y\2].
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After cancelling like terms, moving all terms to the right side, and
factoring, we obtain the equivalent expression

(5.3) \V+1- \y \ v + 2 ) ( \ x |" - \y \ v ) .

The first factor on the right side is nonnegative, and the last two
factors have the same sign if v > 0. (Note that if - 1 < v < 0, the last
two factors have opposite signs, and therefore the opposite inequality
holds in (5.1).) Equality holds in (5.3) if and only if the first factor on
the right is zero, which happens only when x = 0, y = 0, or y is a
positive multiple of x. To prove (5.2), we apply (5.1) to the identity

(5.4) l * l*r-y ly l
l*ΓΊyΓ'

which can be verified by squaring each side and expanding.

LEMMA 13. Let x and y be nonzero elements in an inner product
space. If m is 0, m an integer, then

(5.5)
ι * r iyι

where pm(x, y) = Σ Z U | * \m~k I

multiple of x.

Pm(χ,y)

Equality holds only if y is a positive

Proof If | x | = |y |, the left side of (5.5) becomes |x
and the right side becomes (m + 1)|JC
apply (5.2), observing that

y |. If
|x - y |,
y | , we

Proof of Theorem 2. Applying elementary estimates to (2.2), we
obtain

(5.6)

where

(5.7)
Jl

Ii(x)= f x-y\ \y\-'dy.
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It is well known ([6], p. 53) that since the region of integration is
bounded, I^x) is uniformly bounded for x in Rn by a constant
depending on n, and in particular we have

(5.8) J,(x) g M{n) for

If I x I i? 2, then in /, we have | JC - y | ^ |x |/2, and

(5.9) / , (x )^ί (|x|/2)'-<iy =SM(n)|;
J jy |^1

If f JC I ^ 2 , t h e n

2\ / I I / I / I
J 1 ^ | y |S=4 J I y ( § 4

g M(n)+M(n)4'- σ/(σ-l)

(again we used the result in [6], p. 53). Thus

(5.10) I2(x)^M(n,σ) for

for x I ̂  2.

y \~σdy

Using another well-known result result for integrals of this type ([6], p.
200), we have

(5.11)/ 2(x) g f \χ-y\χ-n\y\-σdy ^M(n,σ)\x\λ-°
J R"

for

Combining (5.6)-(5.12), we obtain (2.7). The proof of (2.8) is the
same, since (5.6) holds with T and g replaced by JR and u.

To prove the Holder continuity of Γg, we use (2.2) $nd (5.5) to
derive, for |JC|, |

(5.12) I Tg(x)-Tg(z)\

=i M(n) ί
J R"

x - z

k = \

where

(5.13) - / ly-
J|y-x|si2|z-x|

x\ k \y — z
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ί
J2\z-x\^\y-χ\S4r

L*= ί
J2\

<λ = ί \y-χ\~k\y-z\~n+k\y\~σdy
Jjy|s3r

I n Jk w e m a k e t h e c h a n g e of v a r i a b l e ξ - (y - x)/\z - x \ a n d o b t a i n

(5.14) Jk= I \ξ\-k\ξ-(z-χ)/\z-x\\-»+kdξ^M(n).

(Note that by symmetry Jk has the same value for all z and JC.) In Lk

we have |y - z | ^ |y - x |/2, and

(5.15) Lk ^2n~k ί \y-χ\~ndy
J2\z-x\^\y-χ\^4r

^ M ( n ) ( l o g 4 r - l o g 2 | z - x | )

^ M ( r , n ) + M ( n ) | l o g | j c - z | | .

In Qk we have \y-x\ ^ | y | / 2 , | y ~ z | ^ | y | / 2 , and

(5.16) Qk g 2" f I y |—^y ^ M(n) ^ ^ ^ ^ ^ = M(r, n).
J\y\^3r cr or

Combining (5.14)-(5.16) with (5.12), we obtain the inequality

(5.17) x-z

which holds for fixed r ̂  1 with | x \, | z \ g r. A similar inequality
holds with T and g replaced by JR and w, and the statement on local
Holder continuity follows.

Proof of Theorem 3. We first consider the case σ - n < p <
σ - 1 . If u E Bp(n) then b - u G Bp-σ, and since ί<σ-ρ<n, p>
(1 + p - σ ) , we have by Theorem 2 that PuEBί+p-σ(n) and

(5.18) || fti || p g

g M(π, σ - p ) | | 6 | |.σ || ii | |p.

Let {um}x

m=ι be a bounded sequence in Bp(n), say ||wm||p ^K for each
m. By (5.18),
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(5.19) \\Pum\\p ^ | |Pfcm | | 1 + p-σ ^ M(n, σ - p ) || 6 | |_σK

By (5.17), for fixed r ^ l and | x | , | z | S r ,

(5.20) | A ι m ( x ) - Λ ι m ( z ) |

^\χ-z\ \\b | | - σ X[M(m, n) + M ( n ) I log I x - z

Thus the sequence {Pww}m=i is uniformly bounded and equicontinuous
on compact subsets of JR". We use the Arzela-Ascoli theorem, while
observing the behavior at infinity of these functions as determined by
(5.19), to conclude that this sequence has a subsequence converging in
the norm of Bp(n).

Next consider l-n<ρ^σ-n. Choose β, 0 < e < 1, such that
1 + e - n < p. If M G Bp(n) then b u E i?_n+6 since p - σ ^ - n <
- n + e. By Theorem 2, Pw G Bi+e-n, and

(5.21) || Aί | |p ^ || Aι ||1+6_n ^ M(n, n - €)||fc u ||e_n

u | U ^ Af(n, n - e)\\b\\-σ \\u ||p.

Proceeding as in the previous case, the analogue of (5.19) is

(5.22) ||A<m | |p ^\\Pum\\ι+€.n ^ M(n, n - e)\\blσK

while (5.20) remains the same (after using || ||e_n ^ || | |P- σ). The
remainder of the proof is the same as in the previous case.
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