Pacific Journal of

Mathematics

INVARIANT MANIFOLDS ON NON-LINEAR OPERATORS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 62, No. 1, 1976

INVARIANT MANIFOLDS OF NON-LINEAR OPERATORS

JouN C. WELLS

In this paper we generalize the classical stable manifold
theorem at a point as well as a recent result of M. Hirsch, C.
Pugh and M. Shub. We deduce the existence of the invariant
manifolds, their smoothness and their continuity under small
perturbations of the underlying endomorphism entirely from the
inverse function theorem and an easy proposition about smooth-
ness of maps on ¢,(E). The constructive nature of our proof
has the advantage of ready adaptation to numerical methods.

Introduction. The following classes of maps between Banach
spaces will be used (all derivatives are Frechet derivatives). Let Lip(f)
denote the Lipschitz constant of f and let Lip(E F)=
{f|Lip(f)<}. Forp=z1land0<a =1 let ¥(E, E) denote the classes

C? ={f | f has p continuous derivatives}

Bi={f|f€C" |D*f(x + h)— D*f(x)| = M| k| for some M}
Ct={f|f € C? and D" is uniformly continuous}

Ci={f|f € C® and D" is bounded}

C*={f|f € C” for all p}

B=={f|f € B¢ for all p}

We will also use the following norms (or pseudo-norms)

1£ o= sup | f(x)l
I fll, = max(||flo, Lip f, - - -, Lip D*™* f)

It f € C* then ||f, = maXozz, sup. | DF (x)]].

For maps in these classes we have an inverse function theorem. We
start with a Lipschitz inverse function theorem. A stronger version of
this theorem is given in Hirsch-Pugh [3]. We provide a proof along their
lines for completeness.

LipscHiTZ INVERSE FUNCTION THEOREM. Let T be a linear invertible
map fron E to E. Suppose f: U — E, U an open nbhd of 0 in E, f(0)=0
and Lip(f)-|T™"||=A <1. Then T + f is a homeomorphism of U onto
an open subset V of E, (T+f)" is Lipschitz and Lip(T+f)"'=
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| T/(1—=A). If U contains the ball B, of radius r and center 0, then V
contains the ball B, of radiusr’ = r (1~ A)/|| T™'|| and center 0. The map
f— f~! from Lip to Lip is continuous in the || ||, topology on the range and
domain of —.

Proof. Consider the set £ of maps g: B,— E for which Lipg =
A TH/(1—=A) and g(0)=0. If g € ¥ then (T'+g)(B)CB, so the
map g'=—T'ofo(T"'+g) is defined. Furthermore Lipg’'=
AT /(A=A), so gEL If h'=—T ofo(T'+h) with h€EZ
then ||[h'~g'ly=A-||lh —glh. Thus the map g— — T'ofo(T"+g)is
a contraction of the complete space £ in the topology | |, Thus there
is a unique fixed point g € &£ satisfying

g=—Tofe(T"+g)

This last equation implies Id+ Tog+ fo(T'+g)=1d so that
(T+f)e(T'+g)=1d. Observe that

KT+ HE)=(T+HWOI = IT]-x + T f(x) = (v + T f(y)
|| TI-{lx =yl = IT7-Lip(f) - Ix =y = I T[- A= 2)-[x = y].

Thus T+ f is 1-1 on all of U and T '+ g is the inverse of T+ f on B,.
Also Lip(T'+ @)= || T+ A | Tl/A=A) = T||/(1-A). By trans-
lating coordinates so that x,— 0 and (T + f)(x,)— 0, the above reasoning
show that Lip(T + f)"' =||T™"[|/(1— A) on all of V. The openness of V
is also obtained. Finally if f and f’ are invertible maps with f™' Lipschitz
then

If1 =S [Fefe = = f e o f ) S LipG)- I =
This proves the last statement.

INVERSE FUNCTION THEOREM. Suppose U is an open subset of E,
f: U— Eis Lip or is one of the Classes X (E, E). Suppose T: E—Eisa
linear invertible map from E to E such that Lip(f — T) - || T™*|| = A for some
A <1. Then fis a homeomorphism of U onto an open subset of E and ™
is in the same class as f. The map f— ' from {f|Lip(f - T)-|T7| =
A} to f7' is continuous in the following way (the indicated topologies'apply
to both f and 7).

TABLE 1
Classes Pseudo-norm
Lipor C*,1=p=wx [ flo
Ch I Mol - I s
Bz, Cy I floeee or Il
B- (N pz0

P

ReMARK. If E is finite dimensional then C? = C%,.
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Proof. The case f € Lip is a restatement of the Lipschitz Inverse
Function Theorem. In all other cases we can conclude from the LIFT
that f is a homeomorphism of U onto an open subset and that f' is
Lipschitz.

Observe that f, g in any of the classes with domain (g) bounded
implies fog is of the same class. Now if f is at least C' then f' is
differentiable by the usual argument which we give for completeness: It
suffices to assume f(0)=0 and show f~' differentiable at 0.

Observe f(0+h)—f(0)— Df(0)[h] = f(h)— Df(O)[h] = o([[1]). So
f(F' () = DFO)f'(h )] = o (| f'(h")]|) which gives Df™(0)- [f(f (k") —
f(h)} = Df'(©0)-o(lf '(m)) so f'(h") = Df(0)[h'] = o(|| h'])). Thus f™
is differentiable and Df'(y) = (Df '(y)))"'. Now suppose f is in one of
C’, B%, C%or C%, p =1 and that f~" has been shown to be of class C*7,
B{™', Ci' or Cy7', respectively, where k =p. The map

L—L"{L|L€EL(EE)LpL-T)-|T"|=A<1}—L(E E)

is of class B*.  Thus Df ' which is the composition: Inverse o Df o f ' is of
class C¥', BX™', C%' or Ck " respectively and so f™ is of class C*, B, C%
or Cj respectively. Repeating the argument gives f~' € C?, B%,, G’ or
C} respectively.

Now we prove the continuity table for f— f™'. The continuity in
I | for C? functions, 1 = p == is implied by the continuity in || |, for
Lipschitz functions. Since B% C C%, p =1 and C% C C%', to prove the
continuity results of the table, it suffices to show that f — f~' is continuous
in|| |, for f in C%. Suppose it has been shown for the pseudonorm
| Ile-i, Kk =p. We have

D'fX(y)=D*(Df (f"(yN™" =D (OGN - P(Df(f7'(y))
- DFF(f ) Df(y) - - DY),

where P, is a polynomial. Now Df™,---, D*'f"'varyin| |, continu-
ously as f variesin| [ by assumption. Also Df,- - -, Df* are uniformly
continuous by assumption so Df(f™")- - - Df*(f ") vary in | ||, as f varies
in| lo. Finally [Df(f™")]" variesin| | as f variesin]| ||, by an earlier
statement. Thus D*f' varies in|| ||, as f varies in || |l.. A repetition
of this argument implies that f™' varies in || ||, as f varies in || |,.

DEFINITION. ¢o(E) = {(xo, X1, - * - )| x, € E for i Z0 and Lim, | x; || = 0}
¢o(E) is a Banach space with norm | x || = sup; || x|

DeriNtTiON.  If f is at least in Lip(E, E) and f(0)=0and r =1 let Cf
be the map from c¢(E) to c(E) defined by [Cf(x)], = rif(x./r'), i=
O’ 1’ e
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ProrosiTioN.  If f(0)=0 and f € Lip or f is in one of the classes X
and r =z 1 then Cf is of the same class as f. Lip Cf = Lip f and the map
f— Cf is continuous according to the following table.

TABLE 2
Classes Pseudo-norms
Lip Il or ) fh
C*, Ct, B:, C§ I flor e or o
C*, B” I 1 pzo0

Proof. The conclusion of the theorem for Lipschitz functions is
obvious. The validity of the general case results from showing that
f € Lip and C* implies Cf € C* and
(1)  D*Cf(x)[h]=(D*f(x)[ho]," -+, r*"D*f (x,/r")[ha], " *)

For k =0,(1) is the definition of Cf. Suppose it has been proved for
k=0,---,k—1. Then

sup [[rf ((en + ha)/r") = rf (xa/r™) = Df (x, /1) 1]
= rO DA (/1) B

= sup [[CON(D*f ((x, + 6k )/r) = DA (afr* ) D,

by the mean value theorem.

Given € >0 choose 8 s.t. || x || < 28 implies | D*f(x)— D*f(0)|| < €/2.
Choose N so large that ||x;/r'|| < & when i > n and then choose §'< &
such that when ||h| <8’

[0 (D*f ((x, + h)/r' )= D*f (x,/r.))|| < €/2 for 0=i =N

Then whenever ||h| <8, 0<6, <1,
sup [[r® - (D*f((xi + 6.h)/r') = D*f (e /r)[h] = € - [ R [

By the inverse mean value theorem (see Abraham and Robbin [1])
Cf € C*, equation (1) is true and hence the proposition is true.

THEOREM 1. Suppose E = E, D E, is a direct sum decomposition of
a Banach space E into two Banach spaces. Suppose that E has been
renormalized  (isomorphically) if necessary so that |(x,y)|z =
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max(||x |z, ||y ). Suppose L,: E,— E, and L,: E,— E, are bounded
linear maps such that L, has a right inverse Li and |L,|<
ILilI™.  Suppose that U, and U, are open spheres with center zero in E,,
E,and U = U, X U,. Suppose f: U — E is Lip or is in one of the classes
. In addition suppose f(0) =0, and that Lip f = o for some || L,|| < r<

L (c)md o<min(r'-(1—r-|L;|), r—||L.]) where f=
/L, ) .
f (0 L) Then in

(Case 1) r=1. The set Wg={x°€E|3x" x}x* -+ with
f(x"y=x"forn =0 and x" = o(r™")} is invariant under f and there exists
gi: U,— E, of the same class as f such that Wg, = {(x, g:(x))|x € U,}.

(Case 2) r=1. The set Wg,={x|f"(x) = o(r")} is invariant under f
and there exists g,: U,— E, of the same class as f such that Wg,=
{(y, 22(y)Nly € U}.  Wg, Wy, and g, and g, are independent of r satisfy-
ing the above conditions. In both cases g, and g, vary topologically with
fE{f|Lipf = o} according to the following table.

TaBLE 3
Class Pseudo-norm on f and g, or g
Lip, C*, pz 1 and C~ ol
Ch I lor-- or Il flos
Ci, B?, I flosor F Il
B~ | I, forall p

RemMarks. The case r =1 with L, and L, invertible is the classic
stable manifold and unstable manifold theorem (see A. Kelley [6] or
Hirsch-Pugh [3]). The case of arbitrary r, L, invertible and f € C?, p =1
has been proved in Hirsch-Pugh-Shub [4] using other methods. Refer to
M. Irwin [5] for a proof similar to ours in the r =1, L, and L, invertible
case.

Proof. 1In either case the sets Wy, and W, are clearly invariant
under f. Let Il;: E,@ E,— E, be the projections. We consider first
case 1.

Let & = ((xo, yo), (X1, ¥1),- - ) be an element of co(E), Define
g: U= co(E) by g =F+h on Uy={Z|(x,y,)E U for all i} where

i’(%), = (r -L ;(xi—l), Lz(}’.’n)/r), i=1
L(X)o= (0, Ly(y:)/r)

and
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h(Z), = (—r' - LieILof(x/r', y./r'),

r- H2°f(xi+1/ri+1, ym/r”')) i
h(Z)o= (0, To f((x1, y1) - 1),

%
[y

By the proposition, %, h and hence g is of the same class as f and
furthermore Lip(g)=max(r-|L}|+|L}|-Lipf. (| L.|l+Lipf)/r)>1.
Thus by the inverse function theorem and the proposition, G =1d — g is
a homeomorphism of %, onto G (%,), an open subset of c,(E), and G™'is
of the same class of f and varies with f according to Table 3. Let
I: U,— ¢(E) be defined by I,(x,) = ((x0,0), (0,0), - - -). Observe that if
we let &= I,(x,) and &,.,= %+ g(Z,) then %, € U, for all n and
lim, &, = & exists and satisfies G o & = Z,. Thus I,(x,) € Range (G) so
we can define w(x)= G 'o[,(x) on U,. The equation G° G '(I)(x)) =
I,(x) is equivalent to w(x)= I,(x)+ g(w(x)) and writing this out gives

Hiowex)=x+0
TL,0 wo(x ) = r ™ Ly(TL0 wy(x)) + I,e f(wy(x)/r)

)
Mow (x)=r-LiITow_(x))—r - LieTLof(wi(x)/r)
ILow,(x)=(1/r)- (Lyy0 wiri(x))+ 1 - o f(w,a(x)/r™)

Multiply the equations with II, and i =1 by L, and then move the
2nd term on the right to the left to get

3) ri Mo f(w(x)/r')y=r-ow_(x)

The terms involving II, give

3) IL, - w; (x)=r-TLo f (Wi (x)/r*")
Thus
4) flw,_(x)/r'™) = wi(x)/r, i=1

Since  w;(x)E co(E), wi(x)/r'=o0(r"). Therefore letting gi(x)=
IT,o wo(x) we have (x, g:(x)) = wy(x) € Wg, and g, is of the same class as f
and varies with f as in the Table 3. On the other hand if (x,y) € W,
then there exists W = (Wg, Wy, - )ECc(E) s.t. wy,=(x,y) and
fW.o/r™y=w,/r - w satisfies equations (4) and hence equations (3) and
by the 1-1 ness of L, equation (2). But G is 1-1 so w = w(x) and
y = gi(x). Thus Wg, ={(x, g:(x))|x € Uj}. If r’ also satisfies the condi-
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tions and r <r’ then defining w,(x) = (r'/r"*)w:(x) we have that w(x)
satisfies equations 4, 3, 2 with r replaced by r’. By the uniqueness of G,
w(x)= w(x)(using r’). Thus g, is independent of r.

(Case 2) This case follows along the same lines as Case 1. Define
g: Up—>co(E) by g=F+h where L(X) =((r-Li(x1), Lo(yi-1)/r),
i=z1and £(&),=(r-Li(x),0) and

v

h(&)i = 1/r)[~Lieof((x. y)- 1)), i
Lo f(r'(ximr, yio1)]
h(Z)= (= Li°I1,° f(xo, y),0)

Then Lip(g)=max(r -[[Li|| + [ L1 Lip(f), (| L.|| + Lip(f)yr)<1. So
G =1d — g and G are of the same class as f, G is a homeomorphism of
U, onto G(U,) and G7' varies with f as in the Table 3. Let
I: U,— co(E) be defined by L(y)=((0,y),(0,0),---) and let w(y)=
G'oI,. As before w(y) is defined on all of U, The equation
G°G7'(I(y)) = L(y) is equivalent to

w(y) = (0, y),(0,0),---) + g(w(y))
which is equivalent to

owy(y)=r-Li(llewi(y))~ LiIL,o f(w(y))
ILewy(y)=y

Miew, (y)=r-LicIlliewu(y)—r Licllief(r'w, (y))
e w,(y)=r"" LyeTlLew, () + ’_'H2°f~("7lwn~1()’))
which is equivalent to
frwi(y) =rw(y) izl
Letting g.(y) =1I1,owo(y) we have {(g(y), y)|y € U} = W, as before
and g, is of the same class as f and varies wih f as in Table 3.

The independence of g, and Wi, from r follows as before.

REMARK. As noted in the proof, w(x) = Lim w"(x) where w"(x) =
Lor L)(x)+gew"(x), n=21, w’=0. Thus

g (or g,)=Lim II,o w§ (x)<or Lim Hzow{;(x))
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and the evaluation of the right hand side for any value of n involves
2n —1 evaluations of f. This gives an effective iterative method for
numerically determining the invariant manifolds.

Counterexample. The continuity in the theorem of g, and g, as
functions of f for f in C' cannot be sharpened from | ||, continuity to
[ [l continuity, as the following example of a C' map from /, to /, shows.

Let s: R'— R' be defined by

s(x)=x,0=x=1/4; =12—x,1/4d=x=3/4, =x—-1,3/4=x=1.

s(x) outside of [0, 1] is defined such that s is periodic with period
one. Let a,(x)=s(nx)-|n|x|]/n |[x|=2; =0, |x|>2 and 4.(x)=
a,(x), |[x|=1;, =0, |[x|>1. Then a, a, are continuous and |a,(x)|,

la,(x)| =|x|/4 for all n Let b,.(x)=fa,,(t)dt and  B,(x)=

fxd,,(t)dt. Define A and A: ,— 1, by A(x)=3a,(x)e, and A (x) =
o

S d,(x)e, where e, is an orthonormal basis. Define B and B: l,— R
by B(x)=3b,(x) and B(x)=3 b,(x,). Then it is not to hard to show
that B and B € C'(l,, R) that DB = A and DB = A. b,(x) is depicted
in the figure.

b4(x)

Ll

-2 -1 0

To construct f we let E =, R with |[(x, y)[le = max(||x|,|y|) and
f(x,y)=2x,(y —1/10- B(x))/2+1/10- B(2x)). On

u={enlenlsa, Le(f- (30 )<

This f will satisfy the conditions of theorem 1 and g;(x) = B(x) when
|x]||=2. Here E,=1, and E,= R'. Now define perturbations of f,

fu(x,y)=f(x,y)+3/12n - (1—-3/4n)7?- (max((x, — 1),0))".
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Then f, > fin| |,. On the other hand the effect of this perturbation is
to shift g along the segment {x|x = te,, 2=t =4} in such way that
sup, || Dg;. — Dg;| stays bounded away from zero.
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