Pacific Journal of Mathematics

GENERATING LARGE INDECOMPOSABLE CONTINUA

MICHEL SMITH

Vol. 62, No. 2 February 1976

GENERATING LARGE INDECOMPOSABLE CONTINUA

MICHEL SMITH

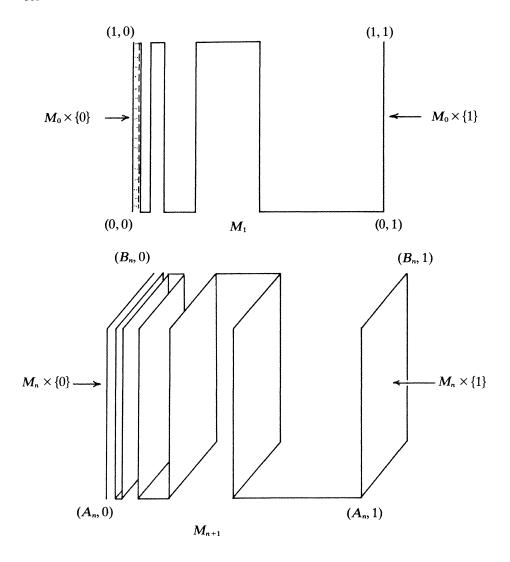
It has been shown by D. P. Bellamy that every metric continuum is homeomorphic to a retract of some metric indecomposable continuum. This result was later extended by G. R. Gordh who proved a similar theorem in the non-metric case. In the present paper a different technique is used to generate such continua.

It is shown that if α is an infinite cardinal number then there is an indecomposable continuum with 2^{α} composants and if I a (non-metric) continuum then I is homeomorphic to a retract of such a continuum. An indecomposable continuum is constructed such that if C is a composant of it and H is an infinite subset of C then C contains a limit point of H. Finally a non-metric continuum is found so that each proper subcontinuum of it is metric.

Definitions and notations. A continuum is a compact connected Hausdorff space. Suppose A is a well ordered set, for each $a \in A$ M_a is a topological space, and if a < b in A θ_a^b is a continuous function from M_b onto M_a so that if a < b < c in A then $\theta_a^b \circ \theta_b^c = \theta_a^c$. The space M is the inverse limit $M = \lim \{M_a, \theta\}_{a \in A}$ means that M is the topological space to which the point P belongs if and only if P is a function from A into $\bigcup_{a \in A} \{M_a\}$ so that $P_a \in M_a$ and if a < b in A then $\theta_a^b(P_b) = P_a$. R is a region in M means that there is an element $a \in A$ and an open set $S \subseteq M_a$ so that $R = \{P \mid P_a \in S\}$. P_a denotes the function from M into M_a so that $P_a(P) = P_a$. If $S = \prod_{a \in A} S_a$ is a product space then $x = \{x_a\}_{a \in A}$ denotes the point of S so that $x_a \in S_a$, and π_a denotes the function from S into S_a so that $\pi_a(x) = x_a$. If α is an ordinal number $\prod_{i \le \alpha} [0, 1]_i$ denotes the cartesian product of α copies of the interval [0, 1]. If $M = \lim \{M_a, \theta\}_{a \in A}$ and for each $a \in A$ M_a is a continuum then M is a continuum. Also if for each $a \in A$, M_a is an indecomposable continuum then so is M. For theorems concerning inverse limits the reader should consult [2].

THEOREM 1. Suppose M is a compact continuum, α is a well ordered set with no last element, M is the inverse limit $M = \lim_{\alpha \to \infty} \{M_{\alpha}, \theta\}_{\alpha \in \alpha}$ of a collection of Hausdorff continua, and for each $\alpha \in \alpha$ there is a subcontinuum I_{α} of M_{α} so that:

(1) $\theta_a^b(I_b) = M_a$ for a < b in α , and



(2) if I is a subcontinuum of M_a intersecting I_a and $M_a - I_a$ then I contains I_a . Then M is indecomposable.

Proof. Suppose $a \in \alpha$ and P is a point of $M_a - I_a$. Then there is a subcontinuum V of M_a which is irreducible from the point P to I_a . The set $V - I_a \cap V$ is connected and $\overline{V - I_a \cap V} = \overline{V}$. From condition (2) it follows that $I_a \subseteq V$, so $I_a \subset V = \overline{V - I_a \cap V} \subset \overline{M - I_a}$.

Now suppose M is the union of two proper subcontinua H and K. Let P be a point of H not in K and let Q be a point of K not in H. There exists an element $a \in \alpha$ and mutually exclusive regions R_a and S_a of M_a containing P_a and Q_a respectively so that $R = \{x \mid x_a \in R_a\}$

does not intersect K and $S = \{x \mid x_a \in S_a\}$ does not intersect H. Thus R and S are mutually exclusive open sets in M containing P and Q respectively. It follows from the above and condition (1) that $\theta_a^{(a+1)^{-1}}(R_a)$ and $\theta_a^{(a+1)^{-1}}(S_a)$ are mutually exclusive open sets in M_{a+1} and each intersects both I_{a+1} and $M_{a+1} - I_{a+1}$. So $P_{a+1}(H)$ and $P_{a+1}(K)$ both intersect I_{a+1} and $P_{a+1}(K)$. But then $P_a(K) = M_a = P_a(H)$, since $P_a = \theta_a^{a+1} \circ P_{a+1}$, which is a contradiction. Thus M is indecomposable.

THEOREM 2. If q is an infinite cardinal number, there is an indecomposable continuum M with 2^q composants.

Proof. Let α be the first ordinal number so that $|\alpha| = q$. The continuum M will be constructed as an inverse limit of α irreducible continua. Let $M_0 = [0, 1]$. Let M_1 be the subcontinuum of $[0, 1] \times [0, 1]$ so that

$$M_{1} = (M_{0} \times \{0\}) \cup \left(\bigcup_{i=0}^{\infty} \left[\left(M_{0} \times \left\{\frac{1}{2i+1}\right\}\right) \cup \left(\{0\} \times \left[\frac{1}{2i+2}, \frac{1}{2i+1}\right]\right)\right]\right)$$

$$\cup \left(\bigcup_{i=1}^{\infty} \left[\left(M_{0} \times \left\{\frac{1}{2i}\right\}\right) \cup \left(\{1\} \times \left[\frac{1}{2i+1}, \frac{1}{2i}\right]\right)\right]\right).$$

The continuum M_1 is the union of countably many copies of M_0 and countably many arcs. If $A_1 = (0, 0)$ and $B_1 = (1, 1)$ then M_1 is irreducible from A_1 to B_1 . Let θ_0^1 be the function from M_1 onto M_0 so that $\theta_0^1(P_1, P_2) = P_1$.

Suppose that $b < \alpha$ and that M_a and θ_c^a have been defined for c < a < b so that M_a is a subcontinuum of $\Pi_{i \le a} [0, 1]_i$ which is irreducible from the point $A_a = \{0\}_{i \le a}$ to the point $B_a = \{1\}_{i \le a}$, and θ_c^a is a function from M_a onto M_c so that $\theta_c^a(\{x_i\}_{i \le a}) = \{x_i\}_{i \le c}$. Suppose that b is not a limit ordinal, b = a + 1 for some $a < \alpha$. Let M_b be the subcontinuum of $\Pi_{i \le b} [0, 1]_i$ so that

$$[*] M_b = (M_a \times \{0\}) \cup \left(\bigcup_{i=0}^{\infty} \left[\left(M_a \times \left\{\frac{1}{2i+1}\right\}\right)\right]$$

$$\cup \left(\left\{A\right\} \times \left[\frac{1}{2i+2}, \frac{1}{2i+1}\right]\right)\right]$$

$$\cup \left(\bigcup_{i=1}^{\infty} \left[\left(M_a \times \left\{\frac{1}{2i}\right\}\right) \cup \left(\left\{B_a\right\} \times \left[\frac{1}{2i+1}, \frac{1}{2i}\right]\right)\right]\right).$$

The continuum M_b is the union of countably many copies of M_a and countably many arcs. M_b is irreducible from any point of $(M_a \times \{0\})$ to

the point $(B_a \times \{1\})$. Let $A_b = A_a \times \{0\}$ and $B_b = B_a \times \{1\}$. Let θ_a^b be the function from M_b onto M_a so that if $\{x_i\}_{i \le b} \in M_b$ then $\theta_a^b(\{x_i\}_{i \le b}) = \{x_i\}_{i \le a}$. If c < a define θ_b^c to be the function $\theta_a^b \circ \theta_a^c$.

Suppose that b is a limit ordinal. Let M'_b be the continuum $M_b' = \lim_{a \to b} \{M_a, \theta\}_{a < b}$. Let A_b' denote the point P so that $P_a(P) = A_a$ and let B_b' denote the point P so that $P_a(P) = B_a$. Then M_b' is irreducible from A_b' to B'_b since for each $a < b M_a$ is irreducible from $P_a(A'_b)$ to $P_a(B'_b)$. Let L_b denote the function from M'_b into $\Pi_{i< b} [0, 1]_i$ so that if $P \in M'_b$ then $L_b(P) = {\{\pi_i(P_i)\}_{i < b} \text{ where } P_i \text{ is the } i\text{th coordinate of the point } P,}$ $P_i = \mathbf{P}_i(P)$. Note that $\mathbf{P}_i(P) \in M_i \subset \prod_{k \le i} [0, 1]_k$. L_b is a homeomorphism because if P is a point of M_b and i < j < b then $\pi_a(\mathbf{P}_i(P)) = \pi_a(\mathbf{P}_i(P))$ for all $a \le i$; in other words the ath coordinate in the cartesian product $\prod_{k \leq i} [0, 1]_k$ of $\mathbf{P}_i(P)$ is the same as the ath coordinate in $\prod_{k \leq i} [0, 1]_k$ of $\mathbf{P}_i(P)$. Then $L_b(M_b') \subset \Pi_{k \le b} [0, 1]_k$. M_b is defined by replacing M_a by $L_b(M_b')$ in [*] above and A_a by $L_b(A_b')$ and B_a by $L_b(B_b')$. So M_b is irreducible from any point of $(L_b(M_b) \times \{0\})$ to the point $(L_b(B_b) \times \{1\})$. Let $A_b = (L_b(A_b) \times \{0\})$ and $B_b = (L_b(B_b) \times \{1\})$. If a < b let θ_a^b be the function from M_b onto M_a so that if $\{x_i\}_{i \leq b} \in M_b$ then $\theta_a^b(\{x_i\}_{i \leq b}) = \{x_i\}_{i \leq a}$. For notational convenience, if b is a limit ordinal let M_{b-1} denote the space $L_b(M_b')$ and let \mathbf{P}_{b-1} denote the function $f \circ \mathbf{P}_b$ where f projects $L_b(M_b') \times [0, 1]$ onto $L_b(M_b') \times \{0\}$.

Let $M = \varprojlim \{M_a, \theta\}_{a < \alpha}$. If for each a, $I_a = M_{a-1} \times \{0\}$ then M and the collection $\{I_a\}_{a < \alpha}$ satisfy the hypothesis of Theorem 1 because M_a is irreducible from the point B_a to each point of I_a . Thus M is indecomposable. If $P \in M$ let P_{γ} denote $\mathbf{P}_{\gamma}(P)$. Let L denote the projection L_{α} as defined above.

Suppose x is a point of M and w_x is the set to which P belongs if and only if there exists a $\beta < \alpha$ so that if $\beta < \gamma < \alpha$ then $\pi_a(P_\gamma) = \pi_a(x_\gamma)$ for all α so that $\beta < \alpha \le \gamma$. Equivalently: w_x is the point set to which P belongs if and only if there exists a $\beta < \alpha$ so that $\pi_a(L(P)) = \pi_a(L(x))$ for all $\alpha > \beta$. The set w_x will be shown to be the composant of M containing x.

Suppose $P \in w_x$. Then there exists a $\beta < \alpha$ so that $\pi_a(L(P)) = \pi_a(L(x))$ for all $a > \beta$. Then $\{y \mid y \in M \text{ and } (y_\gamma)_a = (x_\gamma)_a \text{ for all } a \text{ such that } \beta < a \le \gamma\}$ is a proper subcontinuum of M containing x and P. The following lemma implies that w_x is a composant.

LEMMA A. If I is a proper subcontinuum of M containing the point x then there exists a $\beta < \alpha$ so that if $\beta < \gamma < \alpha$ then $\pi_a(\mathbf{P}_{\gamma}(I)) = \pi_a(x_{\gamma})$ for all a so that $\beta < a \leq \gamma$; (or, there exists a $\beta < \alpha$ so that $\pi_a(L(I)) = \pi_a(L(x))$ for all a so that $\beta < a < \alpha$.)

Proof. Suppose that I is a subcontinuum of M containing the point x. Then there exists an element $\beta < \alpha$ so that $P_{\beta}(I) \neq M_{\beta}$. Suppose that

the lemma is false. Then there exists a first element $a_1 > \beta$ so that $\pi_{a_1}(L(I))$ is non-trivial. Likewise there is a first element a_2 after a_1 and a first element a_3 after a_2 so that $\pi_{a_2}(L(I))$ and $\pi_{a_3}(L(I))$ are non-trivial, $\beta < a_1 < a_2 < a_3$.

Let $\gamma > a_3$. Suppose $0 \in \pi_{a_i}(\mathbf{P}_{\gamma}(I))$ for some i = 1, 2, 3. Then there is a number t distinct from 0 in $\pi_{a_i}(\mathbf{P}_{\gamma}(I))$. But $\mathbf{P}_{\gamma}(I)$ intersects $M_{a_{i-1}} \times \{0\}$ and $M_{a_i} - (M_{a_{i-1}} \times \{0\})$, so $M_{a_{i-1}} \times \{0\} \subset \mathbf{P}_{a_i}(I)$. Thus $M_{\beta} \subset \mathbf{P}_{\beta}(I)$ which is a contradiction.

Suppose $1 \in \pi_{a_2}(\mathbf{P}_{\gamma}(I))$. Then there is a number t < 1 in $\pi_{a_2}(\mathbf{P}_{\gamma}(I))$. But there is a number $r \ge t$ so that $\{A_{a_2-1}\} \times [r,1] \subseteq \mathbf{P}_{a_2}(I)$, this follows from the construction of M_{a_2} . Then $0 \in \pi_{a_1}(\mathbf{P}_{a_2}(I))$ since $A_{a_2-1} = \{0\}_{i < a_2}$ and this is a contradiction. So $1 \not\in \pi_{a_2}(\mathbf{P}_{\gamma}(I))$. Similarly $1 \not\in \pi_{a_3}(\mathbf{P}_{\gamma}(I))$.

Suppose $0 < t_1 < t_2 < 1$ and $[t_1, t_2] \subset \pi_{a_3}(\mathbf{P}_{\gamma}(I))$. But $\mathbf{P}_{a_3}(I)$ does not intersect any of the sets $\{\{A_{a_3-1}\} \times [1/(2i+2), 1/(2i+1)]\}_{i=0}^{\infty}$ or any of the sets $\{\{B_{a_3-1}\} \times [1/(2i+1), 1/2i]\}_{i=1}^{\infty}$, or else either 0 or 1 would belong to $\pi_{a_2}(\mathbf{P}_{a_2}(I))$. Then $\mathbf{P}_{a_3}(I)$ must be a subset of $M_{a_3} \times \{1/k\}$ for some integer k > 1. But $\pi_a(\mathbf{P}_{a_3}(I)) = \pi_a(\mathbf{P}_{\gamma}(I))$ for $a \le a_3$ so $\pi_{a_3}(\mathbf{P}_{\gamma}(I)) = 1/k$ which is a contradiction. So the lemma must be true.

LEMMA B. Suppose q is a cardinal number and α is the first ordinal number so that $q = |\alpha|$. Then there exists a collection G of functions from α into the set $\{0, 1\}$ of cardinality 2^q so that if f and g belong to G then the set $\{x \mid x \in \alpha \text{ and } f(x) \neq g(x)\}$ is cofinal in α .

Proof. Let T be a bijection from $\alpha \times \alpha$ onto α . If $a \in \alpha$ then the set $T(\{a\} \times \alpha)$ is cofinal in α . Suppose that S is a subset of α , let f_S be the function from α into $\{0, 1\}$ so that $f_S(t) = 1$ if and only if $t \in T(S \times \alpha)$. Let $G = \{f_S \mid S \text{ is a subset of } \alpha\}$. Suppose S_1 and S_2 are two distinct subsets of α and a is an element of S_1 not in S_2 . Then $f_{S_1}(T(\{a\} \times \alpha)) = 1$ and $f_{S_2}(T(\{a\} \times \alpha)) = 0$ so $\{x \mid x \in \alpha \text{ and } f_{S_1}(x) \neq f_{S_2}(x)\}$ contains the set $T(\{a\} \times \alpha)$ which is cofinal in α . Thus $|G| = 2^q$ and the lemma is proven.

The continuum M was constructed so that every function from α into the set $\{0, 1\}$ belongs to L(M). If q is a cardinal number and α is the first ordinal number so that $q = 2^{|\alpha|}$ then, by Lemma B, the number of composants of M is at least $2^{|\alpha|}$. If c denotes the cardinality of [0, 1] then M has cardinality at most $c^{|\alpha|}$. But $2^{|\alpha|} = c^{|\alpha|}$, so M has $2^{|\alpha|}$ composants.

Notation: If λ is a limit ordinal let M_{λ} denote the indecomposable continuum obtained by the construction of Theorem 2 with $\lambda = \alpha$.

COROLLARY 2.1. If X is a continuum then X is homeomorphic to a retract of an indecomposable continuum with an arbitrarily large number of composants.

- **Proof.** It follows from the construction in [3] that X is homeomorphic to a retract of an irreducible continuum Y. Then if Y is irreducible from the point A to the point B merely replace M_0 by Y and $\{0\}$ and $\{1\}$ by A and B respectively in the above construction.
- COROLLARY 2.2. There exists a non-metric continuum each proper subcontinuum of which is metric.
- *Proof.* Consider M_{ω_1} , where ω_1 is the first uncountable ordinal. By Lemma A, if I is a proper subcontinuum of M there is a point $x \in M$ and an element $\beta < \omega_1$ so that $\pi_a(L(I)) = \pi_a(x)$ for all a so that $\beta < a < \omega_1$. Thus L(I) is embedded in $\prod_{a \le \beta} [0,1]_a \times (\{\pi_a(L(x))\}_{a < \beta})$. So I is homeomorphic to a subset of the cartesian product of countably many intervals and hence is metric. For each $a < \omega_1$ let x_a be the point of $\prod_{i < \omega} [0,1]_i$ which is 1 at the ath coordinate and is 0 elsewhere. Then the set $\{x \mid x = x_a, a < \alpha\}$ is an uncountable set of points in L(M) which contains none of its limit points. Thus L(M) is not metric.
- Observation 1. If X is a non-metric continuum and every proper subcontinuum of X is metric then X is indecomposable.
- Observation 2. The continuum M_{ω_1} has 2^{\aleph_1} composants, and $c \le 2^{\aleph_1} \le 2^c$. Thus the continuum could have c or 2^c composants depending on which axioms of set theory are assumed. It is also possible that neither equality holds.
- COROLLARY 2.3. There exists a continuum M every proper subcontinuum of which is less numerous than M.
- *Proof.* Let α be the first ordinal number so that $2^c < 2^{|\alpha|}$, where c is the cardinality of the interval [0,1]. Then if $\beta < \alpha, 2^{|\beta|} < 2^{|\alpha|}$. Consider the continuum M_{α} constructed above. M_{α} contains at least $2^{|\alpha|}$ points. By Lemma A, if I is a proper subcontinuum of M there exists a point $x \in M$ and an element $\beta < \alpha$ so that $\pi_a(L(I)) = \pi_a(x)$ for all a so that $\beta < a < \alpha$. Thus L(I) is embedded in $\prod_{\alpha \leq \beta} [0,1]_a \times (\{\pi_a(L(x))\}_{\beta < \alpha})$. So I has at most $c^{|\beta|}$ points and $c^{|\beta|} \leq 2^c < 2^{|\alpha|}$. Again observe that any continuum having this property must be indecomposable.
- Theorem 3. Suppose q is a cardinal number, α is the first ordinal number so that $|\alpha| = q$, and C is a composant of M_{α} . If $H \subset C$ and $|H| < \alpha$ then $\bar{H} \subset C$.
- *Proof.* Suppose $H \subset w_x$. It follows from the definition of w_x that there exists a $\beta < \alpha$ so that if $P \in H$ then $\pi_a(L(P)) = \pi_a(L(x))$ for all a

so that $\beta < a < \alpha$. Suppose $Q \in M - w_x$. Then there exists a $\delta > \beta$ so that $\pi_{\delta}(L(Q)) \neq \pi_{\beta}(L(x))$. Let S_{δ} be a region in $[0,1]_{\delta}$ containing $\pi_{\delta}(L(\theta))$ and not $\pi_{\delta}(L(x))$. Then $R = \{Z \mid \pi_{\delta}(Z) \in S\}$ is an open set in L(M) containing L(Q) but no point of L(H). So $Q \notin \overline{H}$. So $\overline{H} \subset w_x$.

DEFINITION. The subset H of the Hausdorff space X is said to be conditionally compact if and only if it is true that every infinite subset of H has a limit point in H.

COROLLARY 3.1. There exists a conditionally compact indecomposable connected Hausdorff space with only one composant.

Proof. By Theorem 3 any composant of M_{ω_1} is such a space.

REFERENCES

- 1. D. P. Bellamy, Mappings of indecomposable continua, Proc. Amer. Math. Soc., 30 (1971), 179-180.
- 2. S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, New Jersey, 1952.
- 3. G. R. Gordh, Jr., Every continuum is a retract of some irreducible indecomposable continuum, Colloquia Mathematica Societaties Janos Bolyai, 8 (1972), 347–340.
- 4. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Pub. XIII, Revised edition, Providence R. I., 1962.

Received June 23, 1975 and in revised form October 31, 1975.

AUBURN UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)

University of California Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105 J. Dugundл

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

Copyright © 1976 Pacific Journal of Mathematics
All Rights Reserved

Pacific Journal of Mathematics

Vol. 62, No. 2

February, 1976

Allan Russell Adler and Catarina Isabel Kiefe, <i>Pseudofinite fields</i> , <i>procyclic</i>				
fields and model-completion	305			
Christopher Allday, The stratification of compact connected Lie group				
actions by subtori	311			
Martin Bartelt, Commutants of multipliers and translation operators	329			
Herbert Stanley Bear, Jr., Ordered Gleason parts	337			
James Robert Boone, On irreducible spaces. II	351			
James Robert Boone, On the cardinality relationships between discrete collections and open covers	359			
L. S. Dube, On finite Hankel transformation of generalized functions				
Michael Freedman, Uniqueness theorems for taut submanifolds	379			
Shmuel Friedland and Raphael Loewy, Subspaces of symmetric matrices				
containing matrices with a multiple first eigenvalue	389			
Theodore William Gamelin, <i>Uniform algebras spanned by Hartogs</i>				
series	401			
James Guyker, On partial isometries with no isometric part	419			
Shigeru Hasegawa and Ryōtarō Satō, A general ratio ergodic theorem for				
semigroups	435			
Nigel Kalton and G. V. Wood, <i>Homomorphisms of group algebras with norm</i>				
less than $\sqrt{2}$	439			
Thomas Laffey, On the structure of algebraic algebras	461			
Will Y. K. Lee, On a correctness class of the Bessel type differential				
operator S_{μ}	473			
Robert D. Little, Complex vector fields and divisible Chern classes	483			
Kenneth Louden, Maximal quotient rings of ring extensions	489			
Dieter Lutz, Scalar spectral operators, ordered l^{ρ} -direct sums, and the				
counterexample of Kakutani-McCarthy	497			
Ralph Tyrrell Rockafellar and Roger Jean-Baptiste Robert Wets, <i>Stochastic</i>				
convex programming: singular multipliers and extended duality				
singular multipliers and duality	507			
Edward Barry Saff and Richard Steven Varga, Geometric overconvergence of				
rational functions in unbounded domains	523			
Joel Linn Schiff, Isomorphisms between harmonic and P-harmonic Hardy				
spaces on Riemann surfaces	551			
Virinda Mohan Sehgal and S. P. Singh, <i>On a fixed point theorem of</i>				
Krasnoselskii for locally convex spaces	561			
Lewis Shilane, Filtered spaces admitting spectral sequence operations	569			
Michel Smith, Generating large indecomposable continua	587			
John Vuon On the composition algebras of H invariant measures	505			