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The totality M(eSe/H) of bounded regular Borel measures
on the orbit space eSe/H, where S is a locally compact
semigroup and H is a compact subgroup with the identity e,
forms a Banach space; however, its closed subspace MH(ESe/H)
of //-invariant measures forms even a Banach algebra under a
suitable convolution. Furthermore, if w is an idempotent prob-
ability measure with compact support on 5, then w * M(5) * w =
wH * M(S)* wH = MH(eSe/H) algebraically and in various to-
pologies, where wH is the normalized Haar measure on some
compact subgroup //.

1. Introduction. We denote the Banach space of bounded
regular Borel measures and the totality of probability measures on a
locally compact (Hausdorff) space X by M(X) and P{X),
respectively. Beside the norm topology, M(X) may be equipped with
the weak, weak* and vague topologies, which are the topologies of
pointwise convergence on C*(X), C0(X) and K(X), respectively, where
Cb(X) denotes the totality of bounded continuous functions on X, C0(X)
and K(X) the subspaces of functions vanishing at <*> and functions with
compact supports, respectively. In P(X), the weak, weak* and vague
topologies coincide (p. 59, [21; [71). Let S be a locally compact
semigroup, then M(S) is a Banach algebra and P(S) a topological
(Hausdorff) semigroup under the convolution *. We refer to [7] for the
continuity of * in the weak, weak* and vague topologies.

LEMMA 1.1. Let S be a locally compact semigroup. Then
supp(μ * v) C (supp(μ)supp(ι^))~ for μ, v E M(S), and equality holds for
μ, v ^ 0 , where supp(μ) denotes the support of μ.

Proof (Cf. 1.1, p. 686, [5]).

LEMMA 1.2. Let a: X—> Ybe a continuous map (resp. morphism)
between locally compact spaces (resp. semigroups). Then
M(a): M(X)-*M(Y) given by

[M(α)(μ )][/)= μ(/oα), fECb(Y)
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is a norm-decreasing linear morphism (resp. algebra morphism) continu-
ous in the weak topology. Moreover, if a is proper, then M(a) is also
continuous in both weak* and vague topologies.

Proof Straightforward.

LEMMA 1.3. Let Y be a closed subspace of a locally compact space
X. Then every f E K(Y) (resp. / E C0(Y)) has an extension F E K(X)
(resp. FECo(X)).

Proof. This follows from (7.40, p. 99, [1]) and the following
commutative diagram:

y ^\T I I ίryrΛ

Y γu{»}

Y-

c

c (/(») = o).

PROPOSITION 1.4. Let S be a locally compact semigroup and e1 —
eES. Then δe * M(S)* δe = M(eSe) is a Banach subalgebra of
M(S). In fact, if i:eSe—>S is the inclusion map, then
M(i): M(eSe)-> M(S) is an embedding. (Note that, unless mentioned
otherwise, our statements are to apply to each of the topologies
mentioned before.)

Proof We first observe from Lemma 1.1 that δe*M(S)*δeC
M(eSe) and that δe is the identity for M(eSe), whence M(eSe) =
δe * M(eSe) * δe C δ, * M(S) * δe and thus δe * M(S) * δe = M(eSej. Since
μ H> δe * μ * δe is a Banach space linear retraction, M(eSe) is a linear
closed norm retract of M(S). As to the others, we will show the weak
embedding only. Let M(i)(μa)-*>M(i)(μ) in M(5) and / E Cb(eSe);
then / has an extension FECb(S) given by F(s) = f(ese) and thus
μa(f) = [M(i)(μa)](F)->[M(i)(μ)](F) = μ(f). Hence M(i) is an em-
bedding.

For the purpose of this paper it is therefore no loss of generality to
assume that S is a monoid with the identity e.

PROPOSITION 1.5. Suppose that S acts on the left on a locally
compact space X. If μ E M(X) and f E Cb(X), then fμ E Cb(S) is well

defined by fμ(s)= I f(sx)μ(dx).
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Proof. Let € > 0 be given. By the regularity of | μ |, there exists a
compact subset KCX so that \μ\(X\K)< e. For this K and a given
s E 5, let

φ{t) = suV{\f{tx)-f{sx)\:xEK).

Then φ(t)-+ 0 as t -> 5 otherwise, there exist nets ία -* s, and jcα -> x0 in
K so that |/(ίαJCβ)-/(sjcβ)| > e which contradicts to the continuity of /
at sxo Hence

^ί φ(t)\μ\{dx)+f
JK Jx\κ

whenever t is close enough to s. Hence fμ E Cb(S).

2. if-invariant measures . Let H be any compact group
acting on the left on a locally compact space X, A μ E M(X) is called

H-invariant if ί f(hx)μ(dx)= ί f(x)μ(dx) for all f<ΞCb(X\ hEH.

For convenience, we will denote by MH{X) the Banach subspace of all
//-invariant measures in M{X). We now assume that S acts on the left
on X and H is a compact subgroup of units in S. Suppose now that
fECb(X) and μGMH(X). By Proposition 1.4, fμ<ΞCb(S) is well

defined by fμ(s)= I f(sx)μ(dx). If we set (fs)(x) = f(sx), then we note

that fμ(*h) = f (fs)(hx)μ(dx) = μ(fs) = f f(sx)μ(dx) = fμ(s) for all

h£zH. Hence fμ is constant on left cosets sH in S. If S/H =
{sH:sES} and p:S-+S/H is given by p(s) = sH, then
F»F°p: Cb(S/H)-> Cb(S) is an isometry onto ^ ( 5 ) of all functions
which are constant on orbits^ sH. Hence there is a unique function
fμECb(S/H) such that fμ*°p=fμ. If now μEMH(S/H) and
v E MH(X), then we define

on C^X), which we will write

μ * v(f) = J f(sx)μ(ds)v(dx), s = p(s).

As (fh)v = (fl)h, we have μ * v(fh) = μ((fh)v) = μ(Jh) = μ(%) =
μ*v(f), whence μ * i> e MH(X). In particular, if μ, vG MH(S/H),
then μ*v<EMH(SIH).
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LEMMA 2.1. M(p): M(S)-> M(S/H) is a norm-decreasing con-
tinuous linear morphism mapping wH * M(S) into MH(S/H) where wH is
the normalized Haar measure on H.

Proof. We observe first that wH * M(S) C MH(S) by invariance of
wH, and that M(p) maps MH(S) into MH(S/H). And since M(p) is
continuous in various topologies, then so is any restriction and corestric-
tion of M(p).

LEMMA 2.2. M(p) induces norm-preserving bijections
M(S) * wH -> M(S/H) and wH * M(S) * wH -> MH(S/H).

Proof. It suffices to show bijections only (cf. 2.45, p. 20, [6]).

(1) Surjectivity: Let fECb(S) and set fH = \ f(sh)wH(dh). Then

fH G C H ( S ) and hence defines a unique /£ G Cb(S/H) such that %°p =
fH. If now v'E:M{SIH), then f^v\fH) is a bounded linear
functional. Hence there is a ^GM(S) with v(f)= v'(fH). Now
i/ * wH(f) = i/(/w) = v'((fH)H) = V\ΪH) = vtf). Thus v*wH = v, i.e.
i/ G M(S)* wH. Now suppose that even vf G MH(S/H). Then

= / f{hx)wH{dh)v{dx) = I v(fh)wH(dh)

= j v'((fh%)wH(dh) = j v'{THh)wH{dh)=v'{%)

since i>' £ MH{SjH). The last term equals ^(/H) = v(/). Thus wH * v =
v, i.e. v<Ξ wH^*M(S)*wH. Now, for fECb(S/H), [M(p)(v)](f) =

) = "'((/"PiftL B u t (f°P')«°P = ( / °P)H = / ° P ' whence / =
) H ; thus V'((/°/Γ)H) = ^'(f)- This shows M ^ ) ^ ) = v' in both cases,

i.e. M(S/H) is in the image of M(S) * wH and MH(S/H) is in the image of
wH * M(S)* wH under M(p). (2) Injectivity: For μ, vE M(S)* wH, we
note that M(p)(μ) = M(p)(v) implies μ(/) = [M(p)(μ )](£) =
[M(p)(i/)](/w)= v(/) for /G C»(S), hence μ - i/.

LEMMA 2.3. M(p): wH *M(5)* wH-^MH(S//ί) is an algebra
morphism.

Proof. First of all, we observe the following facts: (1) For μ E
wH*M(S)*wH and fEC"(S), μ(f) = [M(p)(μ)](fH). (2) For
v G wH *M(S)* WH and fECb(S/H), fύ G CH(5) is well defined by
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fv(x) = j f(xy)[M(p)(v)](dy) = j f{xy)v(dy)

= I f°p(xy)v(dy), with v = M(p)(v).

Then, if μ, v G wH * M ( 5 ) * wH and f<ΞCb(S/H), we have

[M(p)(μ * !/)](/) = μ * v(fop) = I fop(Xy)μ(dχ)v(dy)

= f f(xy)μ(dx)[M(p)(v)](dy)

PROPOSITION 2.4. M(p): wH * M ( S ) * wH—>MH(S/H) is a norm-
preserving algebra isomorphism.

Proof. It remains to show that M(p)\wH * M{S) * wH is open which
follows from the facts that μ(f) = [M(p)(μ )](/„) for all
μ G w H * M ( 5 ) * WH, and that f E K(S) (resp. / G C 0 ( S ) ) implies fHE
K(S) (resp. /„ G C0(S)) and thus ^ G K(S/H) (resp. ^ G C0(S/H)).

COROLLARY 2.5. Lei H 6e normal in S (2.1, p. 17, [3]). Then
M(p): M(5)->M(S/H) is a continuous algebra morphism mapping
wH * M ( 5 ) * vvH isomorphically onto MH(S/H).

COROLLARY 2.6. Let PH(S/H) denote the totality of H-invariant
probability measures in P(S/H). Then M(p): wH *P(S)* wH-+
PH(S/H) is an isomorphism.

In the remainder, we assume that w is an idempotent probability
measure with compact support on S then w = μE * wH * μF [4].

a

LEMMA 2.7. The maps w * M(S) * w *± wH * M(S) * wH defined via
β

α ( μ ) = wH * μ * wH and /3(^) = w * Ϊ̂  * w are mutually inverse norm-
preserving continuous algebra morphisms so that a(w) = wH and β(wH) =

w.

Proof The proof in (3.1-2, [8]) yields this.
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P R O P O S I T I O N 2.8.

w * M(S) *w = wH* M(S) * wH = MH(S/H)

algebraically and topologically.
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