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ParT II

1. Fundamental unit in Q(V'M) from the expansion of VM.
In the first part of this paper we succeeded to state explicitly the
periodic expansion of VM, M a squarefree natural number, for infini-
tely many classes 1M, each containing infinite many numbers. There
are 14 types of these infinitely many classes, and they will all be
enumerated here for the calculation of the fundamental unit e,,|e;|>1,
of the quadratic field Q(v'M). There are many ways to calculate e;.
Many an elaborate mathematician like G. Degert [4] and H. Yokoi
[7] have done so by finding the smallest solution of Pell’s equation
2 — My =1, or x* — My® = +4, if the latter is solvable which neces-
sitates M = 1(mod 4). Now to solve Pell’s equation, poses another
problem. If the expansion of VM as a periodic continued fraction
is known, the problem is solved. For numerical values of M, this
causes arithmetic difficulties only. If M is just a symbol standing
for any natural number, the challenge of stating the periodic ex-
pansion of VM explicitly as a function of 1M, has yet not been
taken by mathematicians, except in a few cases enumerated by O.
Perron [5]. These few cases have recently been enriched by a
brilliant paper by Yamamoto [6], and by the author in [3]. Of
course, M = D*+ d,1 < d < 2D, and the author conjectures that if
we know a functional relationship D = D(d), the periodic expansion
can be stated explicitly, as was indeed demonstrated by the author
in the first part of this paper for certain arithmetic functions D(d).
But if the expansion of VM as a periodic continued fraction is stated
explicitly, the fundamental unit e; of QM) can be also stated
explicitly by methods which are generally known, and will be briefly
reviewed here. We shall also restate the notations and formulas
of the first part of this paper of which we shall frequently make
use here.

w + P, 1

(1) VM=w=x= :bo+—;Po:0;Q0:1;
Q, Z
bo:[w];
@1 () =2t —p o L. p b, Q. — P
Qs Ly
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Qk—le :M—Pf; bk: [xk];k: 1y 27 Tty
(iil) (w+ Po)(w + P,) = Q,,[Qs + biy(w + P)] ;
— Qp_bi_(w + Pk); k=12 ---.

k

Lp—1%%

It is especially formula (15.1), (iii) we shall use most frequently
here. We shall also use the notation we have introduced in previous
papers [1] for the n—1-dimensional Jacobi-Perron algorithm and which
should be retained for the Euclidean algorithm when n = 2, viz.,

(i) AY =0, (¢ v=0,1; 0, is Kronecker’s symbol) .
(15.2) <(ii) AP = AP 4+ b A, (=0, v=0,1,--:).
(i) AP — MAF™ = (—17Q, (v = 0,1, --).

_If m is the length of the primitive period of the expansion of
V'M as a periodic continued fraction, we obtain from (15.2), (iii),
since @, =1, (=12, --+)

All solution vectors of Pell’s equation z* — My* = (—1)"*,
(15.3) {are given by (A{™™, A™™); ¢, = A" 4+ A{™Vw is a
unit in Qw), w = VM.

From
w = A+, AT _ A™ 4 (w + b)AM™
AS™ + x, ATV A+ (w + by A

we obtain A™*Y = A™ 4+ b, AS™*Y; hence

(15.4) or = A" + (0 + bJAPY = AP+ w4

If @Q,, = 4, then the smallest solution vector of Pell’s
equation &® — My* = (—1)"4 is given by (A{"", Afo*");

15.5
(15.5) if M = 1(mod4), ¢} = —;—(A{”O“’ + wAPY) is a unit in
(Q(w), w=1vVM.
As above, we obtain

1 ,
—é"e_,f - Aéto) + fX}vOAéUOH) .

In [2] the author proved (for the Jacobi-Perron, hence for the
Euclidean algorithm)

(15.6) 1T 2 = A + 2, AP

Since (A™*0, A{™tV)), (Ao, Aot are the smallest solution vectors
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of the corresponding Pellian equations.

THEOREM 15. If M # 1(mod 4), or if no Q, in the expansion of
VM as a periodic continued fraction equals 4, the fundamental unit
of the field Q(w), w* = M, is given by

=

(15.7) er = Xy

k2

1

where m s the length of the primitive period of the expansion of w.
If M = 1(mod 4) and Q,, = 4, the fundamental unit of the field Q(w),
w' = M, is given by

(15.8) e =TI @ .

As H. Zassenhaus [8] has pointed out, this is the most effective
method to calculate e;.

16. Fundamental unit of Q(w), w* = [(2a + 1)* + a]* + 2a + 1;
a, k=1, From Theorem 1, Part I, we recall that the length of the
primitive period of the expansion of w equals 6k. Since, as can be
easily verified by the reader, w? = 1(mod4), the fundamental unit
of Q(w), according to (15.7), is given by

l sk
(16.1) Sor =1L .

Taking into account formulas (0.9), (0.11), (0.13) and (15.1) and
the structures of the z, from §1, we obtain

k—1 2
(16-2) 6y = xz(sl;[l x3s—lx3ax3s+1> st(xsk—xxsk)z .

From (1.8), (i), (i) we obtain, with formulas (15.1), (iii),
—_ (w + PSs—I)(w + PSs) — st + b3s—l(w + 'P3S)

Xgs—1L3s = ’

QSs—lQSs Qas
but b,,_, = 1; Q,, = 2A**; P,, = A* — 2A4** + (a + 1); hence

(16.3) By, = A; A"*; e+l (a=20+1)

Since Pi,,, = 4* — (a + 1); Qs = A*™, we obtain from (16.3)

x3s— 1x33x3s+ 1

_w+ A +(a+1) w+ A~ (a+ 1)
24 At




66 LEON BERNSTEIN

W+ 2ARw + A% — (g + 1)
2Ak+l
A% 1+ 2gA% + (@ + 17 + 240w + A% — (g + 1)
2Ak+1

_ 2A47% 4 2aA4% 4 24w

- ’

2Ak+1

w+ A*¥ + o

(16.4) Lys—1X3sL3s541 = A

We further obtain uy_ 2y = (Qs + bsy_i(w + Py))/Qu, and since
Qs =2, by, =1, Py =A"—2+a +1,

w+ A* +a + 1

(16.5) Lap—1 L3 = 2

We further have, from (1.3)
16.6 po= Wt A ta
(16.6) 1

Substituting the values of the z; from (16.3)-(16.6) in (16.2), we
obtain

¢ = w + AF + a>2_<w + AF + a)z”"”oz.(w + AF +a + 1>2

167 A A 2
' e:<w+A’°+a>2_(w+A"+a,+1)2
! A 2 .

Since the conjugate ¢, of ¢, equals

<—w + AFf +a,>2"_(——w + A* + o + 1)
A 2 ’

we verify that the norm of ¢, is 1 by

N(ef) — l:(Ak +Zzz _ w2]2k. [(Ak + a _z 1)2 —_ wZ]Z
[ = (A o) 4 AT T ok (A o A
A° 1
- 4j2k (A% + o) + 2(4% + @) + 1 — (A* + a) — A
=1 gan—1,
1A

17. Fundamental unit of Qw), w = V(4* —af + A; A = 2a +
1,a,k=1. From Theorem 2 we recall that the length of the primi-
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tive period of the expansion of w equals 6k — 2. Since, w? = 1(mod 4),
for @ = 2u, @, = 4 is possible. But the reader will verify easily from
formulas (2.1) to (2.4), that Q is either odd or of the form 2¢ ¢ =
2s + 1. Thus the fundamental unit of @Q(w), according to (15.7) is
given by the formula

6k—2

(17.1) er = I_I Ly

Though the cycle in the expansion of w is (z_, s 1, ¥3,), We shall
arrange it in the form (xs,_, %s, ®s541), s =1,2, -+, k — 1, leaving =z,
outside the cycles, but including ,,_,. This is done in order to have
b, =1 not at the end of the cycle while making use of formula
(15.1), (iii). We then obtain from (17.1)

k—1

2
(17.2) er = xf(Hl x33—1x3sx3s+1> Lap_1 L3 »
e

From (2.3) we obtain, with formula (15.1), (iii),

Qe +by(w + Py w4+ AR 4 (@ + 1)
(17.3)  2p@5,,, = 220t éam Bet1) — o .

We further obtain in virtue of (17.3)

W51 L35L35 41
_w+ A+ @+)w+ A —(a+1)_ (w+ A —(a+1)

As+L 2Ak—s 2Ak+1
_ A% — 20AF 4 (a + 1) + 24w + A% — (a + 1)
(17.4) 247+
_ 2AMp + 2A% — 2gAF
- 2 Ak ’
L
x3s—1x33x33+1 = ’—ui-—fi_—a“ .

We further have from (2.8) and since Q;_, =2, Py, = P,, =
A — (g +1)

75 oz = w_Jri‘Z_"—_a; Ty gy = L0 A ; (@+1F

From (17.2), (17.4), (17.5) we now obtain

ef:<w+A"—a,)2"[w-{-A"——(a-I—l)F )

(17.6) o .

We also have, as before,

(17'7) N(@f) =1.
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18. Fundamental unit of Qw), w*=A*+a+ 1) — 4; A =
2a¢ + 1;a, k= 1. From Theorem 3 we recall that the length of the
primitive period of the expansion of w as a continued fraction equals
4k + 2. The reader will verify easily from §3, that in this expansion
@, cannot equal 4 for any v. Hence, according to (15.7), the funda-
mental unit of Q(w) is given by

4k+2

(18.1) er = Il = .
From (3.3), we obtain

Py, = Ar + @, st—l = 24 Py = Ar — a, st = A’;
s=1, k=1 Qi =2.

Thus
(18.2) e = (i[l DLos 1 Los )22;33,”1 .
Now
2 @y =Y + A" +aw+ A" —a _ (w+ A —d
24 24° AR
(18.3) _ A4 2(a + 1)AF ;ij— 24A%w + A* — of ’
By iy, = + Ak;li— (a—l—l)(s =1, e, k).
Also
(18.4) Tpr = A T

From (18.2), (18.3), (18.4) we now obtain

(18.5) o = [w + Akz (@ + 1)]%(“’ + /‘1‘; 2 Ny =1.

19. Fundamental unit of Qw), w* =[A* — (¢ + D — 4; A =
2¢ +1,a, k= 2. From Theorem 4 we recall that the length of the
primitive period of the expansion of w as a periodic continued fraction
equals 4(2k — 1). The reader will verify easily from §4 that in the
expansion of no @, can equal 4 for any v. Hence, according to
(15.7), the fundamental unit of Q(w) is given by

8k—4

(19.1) 0 =1l..
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This case is more complicated than the previous one. The cycle
is of length four and starts from the third member of the primitive
period. We thus obtain for e;, with Q,,_, = 2

k—2 2
(192) er = (xlxz)z(ll x4s~1x4sx4sﬂx4s—;z> 2(.’L'usﬂ5,’6415‘4564;:_3@'4;6,2)2 .
From (4.3) we obtain, since b, =1

x _w+P w+ P, _ Q+ b(w+ P)
By = : -

Q), QZ Qz

(19.3) :A+w+A";1—(A+a+1),
o w+ A — (a4 1)
z.2, 1 .

From (4.8), we obtain, since b,,_, =1, b,,., = 1,

o g = Qut b (w A P) 248+ w+ A — 24" —q
4s—1"4s Q4s 2Ak#s
_wtA—a.
2A% s ’
Lo _ Qs+ byssi(w + P,..) _ AT Lo 4+ AF — AT L g
s+1V4s+2 T fomn A
o ’ Qés+2 A k1
_w+ A+ a
S
hence
A — 4 A 4
xAsAlxuxésﬂx»is*z = (w + za;i_(k?l:;l a,)
w2400 + A% — @
o 2Ak+1
19.4
(14 _ A% —2a + 1DA* + @ + 24" w + A% — ¢’
- 2 Akt
Ar — 1
Lps 1 X451 X512 = W+ A (a + ) .

We further obtain from (4.3), for s =k — 1 (these formulas
indeed hold for s =1,2, ---, k — 1)

— Qups + by s(w + Py — 2A +w + A" —2A —q
Qui—s 2A

_ w+ AF — a
2A

Lsp—s5* Lap—s
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Tur o _ Quos T by o(w+ Pyy) 242w+ AP —a —2)
so—3Lgp—p = Qus = 5

—w+ A — (¢ + 1) .

Thus

w+ A*—a w4+ A —(a +1)
2 A )

Substituting the values of (19.3), (19.4), (19.5) into (19.2), we obtain
k __ 2 kE __ 2(k—2)
ef:<w+A (a+l)><w—l—A (a+1)>

(195) Lsto—sXsk— 4Lk —3Lap—2 =

A A
(19.6) .2<w + A";l— (o + 1)>Z_<w + z;k — a,>2 ’
ef:[w+A";(a+1)T"(w+4‘g‘—a)2_ Ne)=1.

20. Fundamental wunits of Q(w), w* = [A* + (A — 1)]* + 44;
A=2%">b odd; d =1, (not both d,b=1); k=2, From the ex-
pansion of w in §5, the reader will verify easily that no @, equals
4. Thus e; has the form e¢; = a + bw, @ and b natural numbers. In
this chapter, we shall approach the calculation of ¢, by a different
approach, since the direct calculation of JI7,x; (in the length of
the primitive period) seems to raise insurmountable difficulties here.
We shall prove the important formula

(20.1)

o :<w+A"+A—1>’°_w+A"+A+1
d 2A 2 '

To justify statement (20.1), we have to prove three facts:

(i) es is an algebraic integer of the form a + bw, a, be N;
(20.2) {(ii) N(es) = %1,

(iii) e, is minimal.
To prove (20.2), (i), we shall show that

(w+ A* + A — D¥(w + A* + A — 1) = 0(mod 2¢+14F) .

We obtain
(@ +A4*+A—D(w+ A*+ A+ 1)
= w® + 2(A* + A)w + (A% + Ay — 1
= A%+ 2(A—1)A* + A* + 2A + A% + 2A4%" + A+ 2(A*F+ A)yw
= 2[A%* + 2A%" + A* + A — AF + (A* + A)w]
(20.3) = 2[A% + A 4 AR 4 A* + A 4 AF 4 (A* + A)w — 2AF]
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= 2[A¥A* 4+ A) + A(A*+ A) + (A% + A) + (A" + Ayw — 247]
= 2[(A* + A)¥w + A* + A + 1) — 24%],
(w+ A"+ A—1)(w+ A*+ A+ 1)
=2(A" + A)(w + A* + A + 1) — 4A4*.
From (20.3) we obtain, multiplying both sides by w + A* + A—1,
and using formula (20.3) on the right side, we obtain
(w+ A¥ + A — 1 (w + A* + A + 1)
= 2(A* + A)[2(A* + A)w + A* + A + 1] — 4A47]
—4Aw + A*+ A -1);
Now, since A* = O(2%), 44%* = O(2¥**A*), hence
(w+ AP+ A — 1w+ A"+ A+ 1)
= 424" + A¥(w + A% + A + 1) — 8AF
— 4A%w + A* + A — 1)(mod 2F11 A%) .

(20.4)

For k = 2, we obtain

(w+ A% + A — 1f(w + A + A + 1)
= (BA® + 44w + A* + A + 1) — 84° — 44w + A* + A — 1)
= 44w + A+ A+ 1) — 44w + A+ A — 1)
=84 = 0(847) .

Thus (20.2), (i) is correct for k = 2.
The reader will have no difficulty to obtain from (20.4), multiplying
both sides by w + A* + A — 1

(w+ A"+ A—-1(w+ A" +A+1)
(20.5) = 8(8A*"* + A%)w + AF + A+ 1)
— 8¥(44* — A + 1) — 84*(2A — Lw(mod 2¢+1A%) ,
For k = 3, we obtain from (20.5), as can be easily verified
(w+ A+ A —-1(w + A+ A+ 1) = 164°w = 0(2*4%) .

Thus (20.2), (i) is correct for k= 38. It is then easily proved by
induction that (20.2), (i) correct for any k = 2.
To prove (ii), we obtain for the conjugate of e

(20.6) e}—_—(“w_*“g;'A_l)k(—w’i-A;—{—A—}—l).

From (20.6), (20.1) we obtain
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er-e; = [(Ak * A4;21)2 - WZT [(A" + A 1— 1 — wz]
= [AH2A DA+ (AL A7 24 DA (AT

AA?
(20.7) .[A% 4+ 2A + DA* + (A+ 17— 2(4 —1)A" — (A + 1)2]
4
- (G4 () -
N(es) = (—1)*.

To prove (iii), namely that e, given by (20.1) is really minimal,
we first observe that, since the highest powers of A in both
(w+ A* + A —1)/2A and in (w+ A* + A — 1)/2 are respectively
A** and A*, the highest power of A in e, equals (A*7%)*-A* = A,
We return now to formula (15.4), viz., ey = A™ + ¢, A™*", where
m is the length of the primitive period in the expansion of
w. Since, by Theorem 5, m = 5k — 6, we obtain from formula
(15.4)

(20.8) ey = APV 4 ALY £ AFOw = AFY 4 API(w — b)) .

We, therefore, have to calculate the power of A ®., By Theorem
5, different expansions are obtained for odd and for even values of
k. We shall carry out the calculation for odd %. From the values
of the b, — s in the expansion of w in §5, we obtain, by formulas
(5.2),

Aé5s—1) — A(()ﬂs—S) + b58_—sA(()ﬁs—2) — A(gSs—a) + 2A(()53-—2) ;

A(()Eis) =A(()58_2) +b58—2A358_1) :A(()M—Z) +<iA8 — 1>(Aé5s—3) +2A(()53-2)) ,
(20.9) 2
Aébs) e (__]-_As - 1>A[()58—3) + (As —_— 1)A(()53—2) .
2
A(()58+1) — A‘()bs—l) _+_ bﬁs——lAéh) — Aéﬁs—S) + 2A(()59—2)
_'_<_%As — 1>A‘()5s—3) + (As — 1)A(()58—2) ,

A(()53+1) e %ASA(()M—M + (As + 1)Aé5s—2) .

Al()63+2) — A(().’)s) + b(5 )A(()58+1) — <_£As — 1>A((]5s—3)
’ 2

+ (As —_ 1)A658—2) + __;_AsAl()ﬁ—ﬁ) + (As + l)Aébs—Z) s
A(()5s+2) — (As — 1)A((J58—3) + 2ASA(()58-—2) .
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1

A((’53+3) — Aé5s+1) + b53+1A(()58+2) — Aéﬁs+1) + (EAIC—S“I — 1>Aé5s+2)

— __%_AsAé5s~3) + (As + 1)A(()53—2) + (_;_Ak—s—l — 1>(As___1)Aéﬁs—3)
+ __;_Ak——s-—l . 1).2A3Ac()63~2) ,
(20.10) A(()5s+3) — _;_(Ak——l — As _ Ak—s-l + 2)Aébs—~3) + (Ak—l + 1)Aé5s—2) .

We shall use the symbolic writing 4 v to express that « and
v contain the same highest power of A. Since AL > AP, we
obtain from (20.10)
(20.11) Apo A griggen

Now A® =1, A" =0, AP =1, AP = A® + b,AP, and from (5.17),

A

(i), since b, = A*¥ 7,
(20.12) Am 2 g
From (20.11), (20.12) we thus obtain the important relation

A((,53+3) é A(k—l)(s+1) .

But, according to Theorem 5, max s = (1/2)(k — 38), hence

A2 +3) é AV DI1/20—38) 1]
0 - ’

(20.13)
Aé/z(ak—g) é A1/2(k~1)2 .

A
From (5'17)y (111), b1/2(5k-11) é b1/2(5k_7) - AO; b1/2(5k_9) é Ay, Hence,
from (20.13),

Aé/2(5k—7) é Aé/2(5k*-9). A(1)/2(5k—5) é Al/Z(k—!i)A(()Ek*Q)
(20.14) A

1/2(5k—5) = AV2[(k—1)2+(k~3)
Al £4 1,

b

We are now at the midterm of the primitive period. If we still
remember that the last term of the primitive period is 2b, 4 A¥, we
obtain 5,45 4 AF.(AVEEmDB -l — AR which proves (iii). The
power k* — 2 instead of #&* is the summation error. Thus it is

proved that e;, given by (20.1) is, indeed the fundamental unit of
Q(w), w* in the chapter title.

21. Fundamental units of various types of quadratic fields.
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In this section we state the fundamental units of quadratic fields
that have a structure similar to that of the previous chapter. They
were treated in §6, 7, 8. We state the corresponding fundamental
unit e; by an expression g(w, 4, k), similar to that in (20.1); the
proof that g(w, A, k) is an algebraic integer of the form a + bw,
@, be N, and that g(w, 4, k) is minimal is completely analogous to
the proof of the corresponding statements for e, in (20.1), and will
therefore not be repeated here; only the norm of g{w, 4, k) will be
found.

(i) Let w*=[4*— (A — 1] +44, A=2%,d,b=1;b odd; d, b
not both 1; £ = 2. The fundamental unit of Q(w) is given by

(21.1) ef:[w+A’°—(A“1)]'°.W+Ak“(‘4+1);
oA 2

Nies) = (—1).
We obtain from (21.1)
, [—w + AF — (A — 1)]"'(—10 + AF — (A + 1)> )

o= 24 2
Hence
L TA = (A —DF —w T [[A* = (A + D) — w
brr6r = [ 1A 1 [ 4 ]
B [A“‘ —2(A — 1A* + (A—1p— A% +2(A—1)A* — (A + 1)2]2
N 44°
(21.2) _[A%—Z(A+ DA+ (A + 1) — A% 4 2(A —1)A* — (A+1)2}
4
(1N s
=(-%) -4,

N(ey) = (—1)*** = N(e;) .

(ii) Let w*=[A*+ A+ 1] —44; A=2%;d,b=1,0bo0dd; d, b
not both = 1; k = 2. The fundamental unit of Q(w) is given by

w+A"+A+1>k.<w+Ak+A—1);N(6f):_1'

2L.3) ¢ = < o -

(iii) Let w*=[A*"— (A + 1] —44; A=2%,d,b=1,bodd; d, b
not both = 1; k = 2.

The fundamental unit of Q(w) is given by

@1.4) o — (w + AF ;A(A + 1)>k .<w + A - (4 — 1)>; Ne)=1.
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(iv) Let w® = [20+F 4 (2¢ — 1)]* + 2¢*2 d = 1.
The fundamental unit of Q(w) is given by

_ w2090k (22 — 1) \F S 4 29FRE 4 (24 4 1) |
er = d+2 ’ ’
(21.5) 2 2
N(es) = (—1)".
(v) Let w*=[2"% 4 (2¢ 4 1)]* — 29%2, d = 1.
The fundamental unit of Q(w) is given by

(21'6) _ w + 2(d+2)k _I___ (2d + 1) k . w + 2(d+2)k + (2d . 1) .
ér = 9d+2 9 ’

N(Gf) = -1,
The units in (iv) and (v) are calculated from the expansions
considered in §§9 and 10. :

22. Fundamental units from [[~,z,. In §21 we stated a unit
e; of Q(w) explicitly and then proved that it is fundamental. The
explicit statement of ¢, was not just a guess—we were guided by
the pattern e, achieved by the formula JJ x,, as was done in §16.
Concluding this paper, we shall return to the calculation of ¢; from
I, %,, using an expansion with the maximal length of a cycle in
the period hitherto known, namely the length 12. This was achieved
in Chapter 14. We recapitulate the results obtained there as follows.

W= [A* — (A + D — 44 = A% — 2(A + 1)A* + (A — 1) ;

@21 A=2%+1;db=1b odd .

(22) «=2% {1_’“3;’;2%:3), b= tiz, = LA —GALD
Busss = 1, @igyey = LT A= ikk_j:l —(4-1) .
e =1 5y = ZEL =+ (A1),
biarsr = 2, Qguys = LEA = Zj’;:z: ~(4-1 .

@) b= = BEL A LB
b= Ly = WA M (A,
L XL
$=01-8—-1 so=%(k—4); k = 4(mod 6) .
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By Theorem 14, the length of the primitive period of the expan-
sion of w equals m = 4k — 2, and has the form:

w = [bO’ bl, be "t b12a+3; Y b123+14; b1230+3’ tt Ty b1230+7, 21 b1230+7y ctty

b1230+3’ ) b2, bly 2b0] .

Since, as can be easily verified, no @, equals 4, we obtain for the
calculation of the fundamental unit ¢, of Q(w)

_ 2 2
er = (o,2,) (xlzso+3x1280+4x1280+5x1230+6) .

(22.4)

sp—1

2
x12s0+7x1230+sQ1230+8{H;) (x123+3x123+4 et xmwu)] .
3=

We first prove
22.5) [w+ A*—(A-D][w+ A"+ (A —1)] =24"w + A* — (A + 1)] .
We obtain from (22.1)
[w+ A" — (A — D)w + A* + (A — 1)) = (w + 4% — (A — 1)
= w? + 2A*w + A* — (4 — 1)
= A% — 2(A + 1)A* + (A — 1) + 24*w + A* — (A — 1)
= 24% — 2(A + 1)A* + 24%w = 24H[w + A* — (A + 1)].

We shall use repeatedly the formula x,x,,, =(Q,,, +b(w+ P,;.))/ Q1.
and obtain from (22.2), (22.3)

4A+w+ A —GBGA+1) _wt+A—-(4+1)

T2, = A i
22.6
(22.6) oy WA —(A+D)
12 1A
/ ko __ _ k —
Lios 3 Ligs s = W+ :4-4,‘_3_,(_114 1); L1245 * L1256 = W+ 144{2;3&,‘4 1) ’
AF — . k —_
2T s = 25 zAkﬂ(ﬁ L o Biar = w+AAiIfS4 v
oo WHA—A-D, o wt AP (A1)
12+11 °* L1as+12 ™ LA » V12e+187 Vi2e-t14 T 9 A3+ :

From (22.7) we thus obtain

o _(lw+ AF— (A —Dllw+ A"+ (A —D]Y
11—:10 Lisersts — < AAFT ) ’

hence, by formula (22.5)

L 3
(22.8) Bognrsagera ** * Lrgssa = (w + 4 2A(A + 1)> )
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we further obtain from (22.3), since these formulas also hold for
s =s,

w4+ A — (A + 1)
24 ’

(22.9) Lr259+3% 1250+ 4L 125 +5F 125046 —

and further

k(A —
(2210) xlgs0+7x12s0+8 = W ;lAk*%(o”‘z 1)

— k~3s9—2
’ Q1230+8 - 4A *0 .

(22.4) now takes the form, in virtue of (22.6), (22.8), (22.9), (22.10)

6f:<w+A"~(A+1)>2<w+A’°~(A+1)2>

4A oA
2w + AF - (A — 1)]_[710 + Akz—A(A + I)Tso ,
(22.11) o) = (w + AF — (A + 1)>sso+4_<w AR (A 1))
24 5 ,

and, since 6s, -4 =k,

. = [w + A"2—A(A + 1)]6.(@0 + A = (A — 1)>' Ne)—1.

We have investigated the case & even. By Theorem 14, when
k = 1(mod 6) is odd, the length of the primitive period is again 4k — 2,
and the reader will have now no difficulty that e, has the same
structure in this case as for even k. The pattern of e, remains the
same as previously. It is also easily verified that e, has the following
structure for the fields Q(w).

(i) Let w=[A"+ (A -1 +44;, 4A=2%+1;d,b=1,0b odd.

Then the fundamental unit of Q(w) is given by

E _ k A
(22.12) ef:(“’*AzZA 1> -(w+A ;A+1>; Niey) = (—1)* .

(ii) Let w*=[A* — (A —-D]*+44, A=2% +1;d,b=1,b odd.
Then the fundamental unit of Q(w) is given by

(i) Let w*=JA*+ A+ 1] —44, A=2%+1;d,b6=1,0 odd.
Then the fundamental unit of Q(w) is given by

(22.14) ef:<'w +A"221- A4 1>"<w + Ak2+ A— 1>; Ne) = 1.
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