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PART II

1* Fundamental unit in Q(VM) from the expansion of VM*
In the first part of this paper we succeeded to state explicitly the
periodic expansion of 'VM, M a squarefree natural number, for infini-
tely many classes VM, each containing infinite many numbers. There
are 14 types of these infinitely many classes, and they will all be
enumerated here for the calculation of the fundamental unit ef, |β/|>l,
of the quadratic field Q(VM). There are many ways to calculate ef.
Many an elaborate mathematician like G. Degert [4] and H. Yokoi
[7] have done so by finding the smallest solution of PelΓs equation
x2 — My2 — 1, or x2 — My2 = ±4, if the latter is solvable which neces-
sitates M= I(mod4). Now to solve Pell's equation, poses another
problem. If the expansion of VΊd as a periodic continued fraction
is known, the problem is solved. For numerical values of M, this
causes arithmetic difficulties only. If M is just a symbol standing
for any natural number, the challenge of stating the periodic ex-
pansion of VM explicitly as a function of VM, has yet not been
taken by mathematicians, except in a few cases enumerated by 0.
Perron [5]. These few cases have recently been enriched by a
brilliant paper by Yamamoto [6], and by the author in [3]. Of
course, M — D2 + d, 1 ^ d <^ 2D, and the author conjectures that if
we know a functional relationship D — D(d), the periodic expansion
can be stated explicitly, as was indeed demonstrated by the author
in the first part of this paper for certain arithmetic functions D(d).
But if the expansion of VM as a periodic continued fraction is stated
explicitly, the fundamental unit ef of Q(VM) can be also stated
explicitly by methods which are generally known, and will be briefly
reviewed here. We shall also restate the notations and formulas
of the first part of this paper of which we shall frequently make
use here.

( i ) VM ^W = X= W 1" P° = b0 + — Po = 0; Qo = 1

(15.1)

*Ί

b0 = [w]

(ϋ
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(iii) (w

= M- PI; bk = [xk]; k = 1, 2, . . . ,

h.^(w + Pk) = Qk-AQjc + h-άw + Pk)]

It is especially formula (15.1), (iii) we shall use most frequently
here. We shall also use the notation we have introduced in previous
papers [1] for the n — 1-dimensional Jacobi-Perron algorithm and which
should be retained for the Euclidean algorithm when n — 2, viz.,

(15.2)

X i ) A\v) = δiv, (i, v = 0, 1; δiv is Kronecker's symbol) .

(ii) Alv+2] = Alv) + Mf + 1 ) , (i = 0, 1; v = 0, 1, •) .

(iii) ^ι)2 = ( - l ) Q,, (v = 0, 1,

If m is the length of the primitive period of the expansion of
VM as a periodic continued fraction, we obtain from (15.2), (iii),
since Qtm = 1, (ί = 1,2, . . . )

(15.3)

From

All solution vectors of PelΓs equation x2 — My2 = ( — l ) m ί ,

are given by {A[mt+ι\ A]

o

mt+1)); ef = Aίm+i) + A{™+ι)w is a

unit in Q(^), w = l/ikf.

bo)A[m+1

we obtain Aίm+1) = Aέm) + Mo ( m + 1 ) ; hence

(15.4) β/ = A (

o

m ) + (w -\- bo)A{

o

m+1) = A$ m ) + # w A J m + 1 ) .

/Ίf Qvo == 4, then the smallest solution vector of Pell's

(15.5)
equation x2 - My2 = (-1)"4 is given by (A[ Vo+1)

if M = I(mod4), e'f = — (A[v°+ί) + wAlv°+1)) is a unit in

Q{w\ w = i/Λf.

As above, we obtain

In [2] the author proved (for the Jacobi-Perron, hence for the
Euclidean algorithm)

(15.6) Π »< = ^v) + α?,iif+1) .
i=l

Since (A[m+1), A(

o

m+1))), {A[v^\ A{

o

v°+1)) are the smallest solution vectors
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of the corresponding Pellian equations.

THEOREM 15. If M ^ l(mod 4), or if no Qυ in the expansion of
λ/M as a periodic continued fraction equals 4, the fundamental unit
of the field Q(w), w2 = M, is given by

(15.7) ef = f[xif
ί = l

where m is the length of the primitive period of the expansion of w.
IfM= l(mod 4) and QVQ = 4, the fundamental unit of the field Q(w),
w2 = M, is given by

(15.8) ef = Π xt .

As H. Zassenhaus [8] has pointed out, this is the most effective
method to calculate ef.

16. Fundamental unit of Q(w), w2 = [(2a + l)k + a]2 + 2α + 1;
α, fc ̂  1* From Theorem 1, Part I, we recall that the length of the
primitive period of the expansion of w equals 6k. Since, as can be
easily verified by the reader, w2 = l(mod 4), the fundamental unit
of Q(w), according to (15.7), is given by

(16.1) \ef = Π «<

Taking into account formulas (0.9), (0.11), (0.13) and (15.1) and
the structures of the xt from §1, we obtain

/k-l \2

(16.2) ef = xUU Xts-iXssXss+i) ^ ( ^ - i ^ ) 2 .

From (1.8), (i), (ii) we obtain, with formulas (15.1), (iii),

* r - (W + f»'-i)(w + P^ - Q* + b ^ W + P^ •

but k.-i = 1; Q3, = 2A*-S; P3s = A* - 2A*~* + (α + 1); hence

(16.3) * 3 5 - ^ = W + A ; + ϊ α + 1 } . (A = 2α + 1)

Since />,.+! = 4* - (α + 1); <33s+i = ^ ' + 1 , we obtain from (16.3)

Ak + (a-{-l)^w + Ak ~

2Ak~s ' As+1
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= w2 + 2Akw + An - (a + I)2

2A"+1

A2k + 2aAk + (a + I)2 + 2Akw + A2* - (α + I)2

2A*+1

= 2A2* + 2 P 4 * + 2A*w

r r τ - w + A" + a
A

We further obtain xak^x3k = (Q3k + 63fc-i(^ + Pzk))IQsk, and since
= 2, 68*-i = 1, P8* = Ak - 2 + α + 1,

κ\ ~ ~ w + Ak + a + I
Δ

We further have, from (1.3)

(16.6) Xί = ™ + ^ +

Substituting the values of the xt from (16.3)-(16.6) in (16.2), we
obtain

( + + + o fw + Ak + a + ϊ

(Λ (Λ

ef =

p . — j

ίw

(w
\

+

+

Ak

A

Ak

A

+ αN

+ αN

A

h Ak

' + α

+ a
2

+

fc 1 )

I)2

Since the conjugate β/ of ef equals

-w + Ak + αλ" . (-w + A* + α + I)2

A / " 2

we verify that the norm of ef is 1 by

= Γ(A^ + α)2 - {(Ak + α)2 + A}]2i;.[(Ak + α + I ) 2 - {(A^ + a)2+A}]2

A2 J 4

•[(A* + α)2 + 2(A* + a) + 1 - (Ak + α)2 - A] 2

— 4A2* = 1 .

17. Fundamental unit of Q(w), w - V(Ak - cCf + A; A = 2a +
1, a, k^l. From Theorem 2 we recall that the length of the primi-
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tive period of the expansion of w equals 6k — 2. Since, w2 ~ I(mod4),
for a = 2u, Qυ = 4 is possible. But the reader will verify easily from
formulas (2.1) to (2.4), that Q is either odd or of the form 2ί, t =
2s + 1. Thus the fundamental unit of Q(w), according to (15.7) is
given by the formula

(17.1)
6/c—2

ef = Π X

Though the cycle in the expansion of w is (#3s_2, α?3β_1, x3s), we shall
arrange it in the form (α?8.-i, #3S, #s.+iλ s = 1, 2, , k — 1, leaving x1

outside the cycles, but including α?3*-2 This is done in order to have
b3s = 1 not at the end of the cycle while making use of formula
(15.1), (iii). We then obtain from (17.1)

(17.2) βf = X\

From (2.3) we obtain, with formula (15.1), (iii),

- #3S+i + &3s(^ + P3s+1) __ w + Afe + (a

We further obtain in virtue of (17.3)

== w + Afe + (a + 1).w + Ak - (a + 1) _ (w + Ak)2 - (a + I)2

(17.4)
2aAk + (a + I)2 A2k ~ (a + I)2

- 2aAk

tc; + Afc — a

We further have from (2.3) and since Qu-i = 2, P3A;_1 = P3Λ =

Ak - (

(17.5)
_ w + Ak — a .

= [w + Ak - (a + I)]2

2

(17.6)

From (17.2), (17.4), (17.5) we now obtain

w + Ak - a \2k[w + Ak - (a + I)]2

ef =

We also have, as before,

(17.7) N(ef) = 1 .
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18. Fundamental unit of Q(w), w2 = (Ak + a + I)2 - A; A =
2α + 1; α, & ̂  L From Theorem 3 we recall that the length of the
primitive period of the expansion of w as a continued fraction equals
4& + 2. The reader will verify easily from §3, that in this expansion
Qυ cannot equal 4 for any v. Hence, according to (15.7), the funda-
mental unit of Q(w) is given by

(18.1)

From (3.3),

Pu-ι =
8 = 1,

Thus

(18.2)

Now

I

(18.3) <

2s 1 2s

v^2s ltΛJ2s ~

Also

(18.4)

From (18.2)

(18.5)
βf - P

we

A* 4

* * , h

w

__ A

_ w

,(18

« +

obtain

- α, Q2 s-

ef =

+ Ak +
2Ak~sΛ1

2k + 2(α

+ Afc +
A

a

.3), (18.-

A* + (a
A

i = 2-

/ k

\Six

a w

4fc + 2

A f c-S + 1;

2 .

+ A"
2AS

+ l)Ak + o

(o +

2/c + l

4) W€

+ 1)

2A

1). _

_ A4 +
2

! now

T*(w

i

P — /Ifc n Γί — A
•E2s — •"• ^ y ^<*2s — **

I

- α _ (w + A*)2 - α2

2A4 + 1

} + 2Aftw + Au - a2

k + l '

- 1 k)

a

obtain

+ A" + α)\ N(c _ χ

2 ' 6 /

19. Fundamental unit of Q(w), w2 = [A& - (α + I)]2 - A; A =
2α + 1, a, k ^ 2. From Theorem 4 we recall that the length of the
primitive period of the expansion of w as a periodic continued fraction
equals 4(2& — 1). The reader will verify easily from §4 that in the
expansion of no Qv can equal 4 for any v. Hence, according to
(15.7), the fundamental unit of Q(w) is given by

8k~4

(19.1) ef = Π a?,
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This case is more complicated than the previous one. The cycle
is of length four and starts from the third member of the primitive
period. We thus obtain for ef, with Q4k-2 = 2

(Λ Q 9λ e — (v v Yι

From (4.3) we obtain, since bx = 1

w + Px w + P2

(19.3)

P2)

w + Ak

From (4.3), we obtain, since δ^^ = 1, bis^ι = 1,

^ /y Q43 + &4s-i(̂  + PJ _ 2A^S + w + Afe - 2Afe~s - a
"* " •

Q4S

w + Ak — a

2Ak~

As

Qis

w + AA +

hence

^ - 2(α + l)Ak + a2 + 2Akw 2fe - a 2

2Ak+1

- w + Ak - (a + 1)

We further obtain from (4.3), for s = & — 1 (these formulas
indeed hold for s = 1, 2, •••,&-!)

P 4 f c _ 4 ) _ Ak - 2A - q

w + Ak - a
2A
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Thus

= w + Ak - (α + 1) .

Ak - α - 2)
"

+ A* - (α + 1)
~j5 r r r r

Substituting the values of (19.3), (19.4), (19.5) into (19.2), we obtain

/ _ ( w + Ak - (a + 1) Yf w + Afe - (a + 1)N

(19.6) ' w + Ak — (a

_ [ w + Ak - {a + 1)
A

A

+ A" - ft)2

. N(ef) = 1 .

20. Fundamental units of Q(w), w2 = [Ak + (A - I)]2 + 4A;
A = 2% b odd; d ^ 1, (not both d, b = 1); A ̂  2. From the ex-
pansion of w in §5, the reader will verify easily that no Qυ equals
4. Thus β/ has the form ef = α + δw, α and 6 natural numbers. In
this chapter, we shall approach the calculation of ef by a different
approach, since the direct calculation of J\!?=ι xt (in the length of
the primitive period) seems to raise insurmountable difficulties here.
We shall prove the important formula

(20.1) ef =
w + Ak + A — 1Y w + Ak + A

2A

To justify statement (20.1), we have to prove three facts:

( i ) βf is an algebraic integer of the form a + bw, a, b e N;

(20.2) (ii) N(ef)= ± 1 ;

Xiii) βf is minimal.

To prove (20.2), (i), we shall show that

(w + Ak + A - l)\w + Ak + A - 1) = 0(mod2fc+1Afc) .

We obtain

(a + Ak + A- l)(w + Ak + A + 1)

= w2 + 2(Afc + A)w + (Ak + A)2 - 1

= A2fc + 2(A - l)Ak + A2 + 2A + A2fc + 2

= 2[A2k + 2Afc+1 + A2 + A - Ak + (Ak

(20.3) - 2[A2fc + Ak+ι + Afc+1 + A2 + A + Ak

+1 + A2+2(Ak

A)w]

(Afc + A)w - 2Afc]
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= 2[Ak(A» + A) + A(Ak + A) + (Ak + A) + (Ak + A)w - 2Ak]

= 2[(A" + A){w + A" + A + 1) - 2Ak] ,

(w + A" + A - ΐ)(w + Ak + A + 1)

= 2(Ak + A)(w + Ak + A + 1) - AAk .

From (20.3) we obtain, multiplying both sides by w + A*+ A — 1 ,
and using formula (20.3) on the right side, we obtain

(w + Ak + A - l)2(w + Ak + A + 1)

= 2(Ak + A)[2(Ak + A)(w + Ak + A + 1] - 4A*]

- 4A*(M; + A" + A - 1)

Now, since Ak = 0(2*), 4A2* = 0(2k+ιAk), hence

(w + Ak + A- l)\w + Ak + A + 1)

\Δ\JΛ) _ 4^2Afc+1 + A2)(w + Afe + A + 1) 8Afc+1

- 4A*(w + Ak + A - l)(mod 2k+1Ak) .

For ft = 2, we obtain

(w + A* + A - l)2(w + A2 + A + 1)

= (8A3 + 4A2)(w + Afc + A + 1) - 8A3 - 4A2(w + A2 + A - 1)

EΞ 4A2(w + A2 + A + 1) - 4A2(w + A2 + A - 1)

- 8A2 = O(8A2) .

Thus (20.2), (i) is correct for k = 2.
The reader will have no difficulty to obtain from (20.4), multiplying

both sides by w + Ak + A — 1

(w + A" + A- l)\w + Ak + A + 1)

(20.5) = 8(3A*+2 + A8)(w + Ak + A + 1)

- 8*(4A2 - A + l) - 8Aft(2A - l)w(mod 2k+1Ak) .

For k = 3, we obtain from (20.5), as can be easily verified

('M; + A3 + A - l)3(w + A3 + A + 1) = lβA'w = O(24A3) .

Thus (20.2), (i) is correct for k — 3. It is then easily proved by
induction that (20.2), (i) correct for any k"2>2.

To prove (ii), we obtain for the conjugate of ef

(20.6) e,f-f-υ> + A> + A- 1\Y -w + A" + A + 1

From (20.6), (20.1) we obtain



72

t

\

[(A"
L

Ά2k + 2

LEON BERNSTEIN

+ A - I)2 - w*ΎΓ(Ak + A + I)2 - w2]

4A2 J L 4 J
;(A - 1)A* + (A - I ) 2 - A24 - 2(A - 1 ) A k - (A

4A2

+i)2τ

.1
(20.7) , ΓA2fe + 2(A + l)A fe + (A + I ) 2 - 2(A - l)Afc - (A + 1)2Ί

To prove (iii), namely that ef given by (20.1) is really minimal,
we first observe that, since the highest powers of A in both
(w + Ak + A — 1)/2A and in (w + A* + A — l)/2 are respectively
A*"1 and A\ the highest power of A in β/ equals (A*-1)"'^ = Ak\
We return now to formula (15.4), viz., ef = A£m) + ^wAJm+1), where
m is the length of the primitive period in the expansion of
w. Since, by Theorem 5, m = 5k — 6, we obtain from formula
(15.4)

(20.8) ef - A^"6) + 60A^"5) + A ^ " 5 ^ = Aί5fe"4) + Aί5fe-5)(^ - δ0) .

We, therefore, have to calculate the power of A{

0

5k~5). By Theorem
5, different expansions are obtained for odd and for even values of
k. We shall carry out the calculation for odd k. From the values
of the bv — s in the expansion of w in §5, we obtain, by formulas
(5.2),

(20.9)

A^5S) = (—A8 - l)AJ5s-3) + (A3

(A3 -

i(5β-3)
1-0

-2) + —AsAΓs3) + (A'

= (A' -
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5S+I J ±-A"-s-1 - l W s + 2 )

— AΆf'-v + (Aε

(20.10) -AΓ+3) = — (A"'1 - A* - A"'*'1 + 2)Aί,5s-s> + (A"'1 +
Δ

A

We shall use the symbolic writing n = v to express that u and
v contain the same highest power of A. Since A{

0

5s~2) > A£5s~3), we
obtain from (20.10)

(20.11) At+3) = Ak~ιA{t~2) .

Now AΓ = 1, A^ - 0, Λi2) = 1, A^ = A^ + M ί 2 ) , and from (5.17),

(i), since δL = A^"1,

(20.12) Aί3) = A^ 1 .

From (20.11), (20.12) we thus obtain the important relation

A

But, according to Theorem 5, max s — (l/2)(fc — 3), hence

(20.13)
^l/2(5fc-9) ^ ^l/2(fe-l) 2

From (5.17), (iii), 61Λ(«_U) = 61 / l ί w_7 ) = A0; 61/ί(βt_w = A1"1*-''. Hence,
from (20.13),

(20.14)

A A

Λl/2(5fe-7) _ /11/2(5fc-9). /ll/2(5fc-5) I t J l/2(fc—3) Λ (δfc-9)
o — -"-o > •"'•o — •"- ^ o

/11/2(5&-5) ft ΛV2{{k
•Π.Q X l

We are now at the midterm of the primitive period. If we still

remember that the last term of the primitive period is 260 = A&, we

obtain M Γ " 5 ) = Ak'(Av^k'1)2+^-^)2 - Ak2~\ which proves (iii). The
power k2 — 2 instead of k2 is the summation error. Thus it is
proved that ef, given by (20.1) is, indeed the fundamental unit of
Q{w), w2 in the chapter title.

21* Fundamental units of various types of quadratic fields*
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In this section we state the fundamental units of quadratic fields
that have a structure similar to that of the previous chapter. They
were treated in §6,7,8. We state the corresponding fundamental
unit ef by an expression g{w, A, k), similar to that in (20.1); the
proof that g(w, A, k) is an algebraic integer of the form a + bw,
a, b 6 N, and that g(w, A, k) is minimal is completely analogous to
the proof of the corresponding statements for ef in (20.1), and will
therefore not be repeated here; only the norm of g(w, A, k) will be
found.

( i ) L e t w2 = [Ak - (A - I ) ] 2 + 4 A , A = 2% d,b^l;b o d d ; d, b
not both 1; k >̂ 2. The fundamental unit of Q(w) is given by

(21 1) e - \w + Ak - (A " ^ T wT
2A J

N(e,) = (-l)*+ ι .

We obtain from (21.1)

, = Y-vj + Ak - (A - 1)1*
f L 2A J '

Hence

L* - (A - I)]2 - w91*. \[Ak - (A + I)]2 -
βf'e/ ~ I 4A> J 1 4

1" [[
J 1

= ΓA2fc - 2(A - l)Afe + (A-l) 2 -A 2 t +2(A-l)A ί : - (A + I)2]2

L 4A2 J
(21.2) Γ̂ M -2(A +1)Afe + (A + I) 2 - A2" + 2(A - 1)A* - (A + 1)

N(e'f) = (-l)k+ί = N(ef) .

( i i ) Let wz = [Ak + (A + I)] 2 - 4A; A = 2Ψ, d,b^l,b odd; d, b

not both = 1; k ^ 2. The fundamental unit of Q(w) is given by

(21.3) β / =

(iii) Let w2 = [A* - (A + I)]2 - 4A; A = 2dδ, d, 6 ^ 1, 6 odd; d, &
not both = 1; k ^ 2.

The fundamental unit of Q(w) is given by

(21.4) . ,
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(iv) Let w2 = [2M+1)* + (2d - I)]2 + 2d+\ d^
The fundamental unit of Q(w) is given by

(21.5)
βf

_ / w (2d - V (
/ Λ

w (2d

) '

N(ef) = (-l)k.

(v) Let w2 = [2 ( i+2) i + (2d + I)]2 - 2i+2, d ^ 1.
The fundamental unit of Q(w) is given by

(21.6) Λ . (2*
J •(J

(2d -

N(ef) = - 1 .

The units in (iv) and (v) are calculated from the expansions
considered in §§9 and 10.

22* Fundamental units from ΐ[T=iXt* In §21 we stated a unit
βf of Q(w) explicitly and then proved that it is fundamental. The
explicit statement of βf was not just a guess—we were guided by
the pattern ef achieved by the formula ΐlxif as was done in §16.
Concluding this paper, we shall return to the calculation of ef from
ΠS=i#ί> using an expansion with the maximal length of a cycle in
the period hitherto known, namely the length 12. This was achieved
in Chapter 14. We recapitulate the results obtained there as follows.

(22.1)

(22.2)

w2 = [Ak ~(A + I)]2 - 4A = Aΐk - 2(A + l)Ak + (A - I)2

A = 2% + 1; d, b ^ 1, b odd .

w + Ak + (A + 2) , _ ... v _
2A + l p X„ _

1 ~

Ak-(5A

2A* -

(22.3)

it? + A*

4A

(A - 1) ,

2 s + 5 - l , x12s+6

— 2 , ί^i2s+8 —

A*"8 8"1

- Afc - 4A3 8 + 2 + (A - 1) .

w + Ak - 2A*"3s-2 - (A - 1) .

_ w + A* - A3ί3+1' + (A - 1) .

_ w + A" - 4A t-3 t 8 + 1 ) - (A - 1)

w + A" - 2A3(S+1)+1 + (A - 1)

s = 0, 1, , s0 - 1; s0 = —(A; - 4); k = 4(mod 6) .
6
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By Theorem 14, the length of the primitive period of the expan-
sion of w equals m = 4k — 2, and has the form:

t 2,

ί>i28 0 +3, ••*, b i 9 b l f 2 b 0 ] .

Since, as can be easily verified, no Qυ equals 4, we obtain for the
calculation of the fundamental unit ef of Q(w)

(22.4)

We first prove

(22.5) [w + Ak-(A- l)][w + Ak + (A - 1)] = 2Ak[w + Ak - (A + 1)]

We obtain from (22.1)

[w + Ak - (A - l)][w + Ak + {A- I)]2 = (w + A*)2 - (A - I)2

= w2 + 2Akw + A2* - (A - I)2

= A2k - 2(A + 1)A* + (A - I)2 + 2A% + A24 - (A - I)2

= 2A2* - 2(A + 1)A* + 2Akw = 2Ak[w + Ak - (A + 1)].

We shall use repeatedly the formula xtxt+1=(Qt+1+bt(w + Pt

and obtain from (22.2), (22.3)

l) _ w + A* - (A + 1)

ί22 6Ϊ 4 A

w + A»(A + l)
4A

(22.7) _

' ^ 128 + 1°

«Ί2,+

From (22.7) we thus obtain

A" - (A - l)][w + A" + (A- 1)] V

hence, by formula (22.5)

xx
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we further obtain from (22.3), since these formulas also hold for
8 = So

(22.9)

and further

w + Ak - (A + 1)
2A

(22.4) now takes the form, in virtue of (22.6), (22.8), (22.9), (22.10)

[o _ fw + A* - (A + 1) Y/ w + A" - (A + I)2

2A

(22.11)

•2[w + A" - (A -

x
1)= /w + ^ f c - (A + l)VΛ + 4 /w + A" -

2A /

and, since 6s0 + 4 = A ,

Γv, + A' - (A + I)"]*

We have investigated the case k even. By Theorem 14, when
k ΞΞ l(mod 6) is odd, the length of the primitive period is again Ak — 2,
and the reader will have now no difficulty that ef has the same
structure in this case as for even k. The pattern of ef remains the
same as previously. It is also easily verified that ef has the following
structure for the fields Q(w).

( i ) Let w2 = [Ak + (A - I)]2 + 4A; A = 2db + 1; d,b^l,h odd.
Then the fundamental unit of Q(w) is given by

( 2 2 . 1 2 ) βf = ( w + A " + A ~ l w + Ak + A + 1\

(ii) Let wz = [Ak - (A - I)]2 + 4A, A = 2db + 1; d, b ^ 1, 6 odd.
Then the fundamental unit of Q(w) is given by

(22.13) ef =
2A

(iii) Let w2 = [Ak + (A + I)]2 - 4A, A - 2d6 + 1; d, 6 ^ 1, δ odd.
Then the fundamental unit of Q(w) is given by

(22.14) ef = w + A" + A + l\k fw + Ak + A
2A

N(ef) = - 1 .
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