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The main result of this paper is that weak type multiplier
theorems for Jacobi expansions yield weak type multiplier
theorems for Hankel transforms.

In recent papers the authors studied multiplier theorems
for ultraspherical and Jacobi expansions. An interesting
paper of Igari suggested a new approach to multiplier theorems
that used asymptotics instead of the elaborate machinery
used earlier.

This paper extends the method of Igari to give the first
weak type multiplier theorem for Hankel transforms. This
extension is important in itself and because this method
together with the authors’ results for Jacobi multipliers will
generalize to the ‘‘radial”’ functions associated with the other
compact symmetric spaces.

Let {P»?(x)} be the Jacobi polynomials with indices (&, 8). The

functions {P{#"(cos §)} are orthogonal with respect to the measure
dp(0) = (sin 6/2)**** (cos 6/2)***'dd. For measurable f on [0, 7] define

171 = {1 s ramo)”

and
£ = | 70 P (cos 0)ipt)
so that if
it = (1P (cos OFauco) ,
then

£0) ~ 3, F (), P*(cos 0)

where equality holds at least for finite series.
The multiplier transformation defined by the function ¢(x) is
denoted by T,, where at least formally,

T.f(6) ~ 3. $(m)f (), Py(cos 0) .

The operator T, is said to be of strong type p, 1 < p < = if
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T, = llen) |, =sup [ Tsf I, (Ifll,=1).
The operator is said to be of weak type p if-
(Tyhy = (o)), = sup Meela: [ T f(0) > M2 (>0, [[f1, = 1) .

The same objects of harmonic analysis are also needed for the
Hankel transforms. Let dn(x) = #*"'da_F(x) = v *J(x) and briefly
define:

ol = ()96 7))

i) = | o) Zday)in(v)

(at least for g continuous with compact support),

o) ~ | "aw) Adenan)

U ~ | i) 2enan)
'U,|, for the strong type p norm of the operator ,
(U,;», for the weak type p norm .

The idea of Igari [4] is to transform strong type multiplier
theorems for Jacobi expansions into strong type multiplier theorems
for Hankel transforms. His result is

TueoreM (Igari). Let «, 8> — 1 and assume ¢ 1S continuous
on (0, =) excent on a null set. If 1 < p < o, then

#(@), = lim inf[g(en) ], .

Igari’s techniques are adapted here to prove a similar theorem
for weak type multipliers.

THEOREM 1. Under the same hypotheses as above
(g(x)), = 1if{la(i)nf (p(en)),
The theorem will be proved following a

LEMMA. Lot EC R satisfy 7(E) < o and let f(x)— f(x) a.e.
in K as n— . Then if s >0

Nee B | f(x) > s} = li;riinf {xe E:|f(x) > s}.

The lemma can be proved by applying Fatou’s lemma to the
characteristic function of {x <€ E: |f.(x)| > s}.
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Proof of Theorem 1. It will be sufficient to prove the theorem
for compactly supported infinitely differentiable functions, so let ¢
be one such with support in (0, M).

Let g:(0) = g(\8) for )\ so large that xm > M, and let

G(z, \) = gy(%)gf(n)l’éf’”(cos %) ,

G¥(z, \)

fl

So( 2 Yastm) i (cos T
H"(z, ) = G(z, ») — G¥(t, \) ,

GE) = | sW)e W) Alenidn) = Vg .

A careful reading of Igari’s argument shows that there is a constant
B independent of A, N and K such that once )\ is sufficiently large

(1) | LH(e, ) a(e) = BIN®.

He shows that G¥(z, \) converges everywhere to a function G¥(7)
and that a subsequence of G*(¢) converges a.e. in (0, =) to G(2).
Let €¢>0,0 >0, K >0, and s > 0 and define

M, = <<¢<%>>>ZHQIH§S_” .

If ¢(n/\) defines a weak type p operator on Jacobi series then
o |G\, N)| > s} = M, .
Then if )\ is sufficiently large
e £ K: |Gz, \)| > s} < 222 M1 + ¢) .
Let N?® > B/ed® so that relation (1) implies
e = K | HY (7, M| >0} = ¢,
and G¥(z, M) = G{z, M) — HY(z, \) so that

=K G, )| >s+olC{r = K |G(r, M| >stU{t = K [G(T,\)| =8
and | HY(z, N)| > o},

thus
(2) e £ K |GV, M) > s + 0} < 2202 (1 +¢) + 6.

Now choose \; — =0 such that
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im (o 35))), = tmint ((o(3))

and observe that lim,_, 2°T\*"%||g,||2 = |g|? so

3 20+1y 2a+2 — — i 3 ﬁ ? Pa—P

lim 202, = M = limint (((62)))|a]25™
thus if A is replaced by A; in (2) and then j increased, the lemma
implies
(3) N K |G¥7)| >s+0} <M1 +¢)+¢.

If N; is now chosen so that G"i(r) — G(z) a.e. in (0, =), then relation
(3) and the lemma yield

e K |Gr)| >s+ 0} M1 +¢)+¢.
Now, first the &, then the J, and finally the K can be removed by
standard arguments to yield

7ie: |Usg()| > 5) < lim int (((2)))" 9135

and the Theorem is proved.
To transfer strong type multiplier theorems from Jacobi series

to Hankel transforms Igari’s theorem should be used, for weak type
results Theorem 1 is the tool; for instance ([a] is the greatest integer
not exceeding «).

THEOREM 2. Let a = 8 > — 1/2 and m = [a] + 2; assume that
6 18 m times continuously differentiable in (0, ) and let

(AT = sup |5@) [ + sup M | a5 (a) [fa~de

then U, is of weak type 1 and
(U,») = CA.(9)

where C does not depend on o.

Proof. Define 4°6(n) = ¢(n) and L ¢(n) = 4**¢(n + 1) — 4*¢(n) for
k=12 --- and let ¢.(x) = ¢(cx).
It can be shown (see Bonami and Clerc [1], Theorem 4.12) that
e(n+m)
s m) s e T g @) da

Consequently by the Schwarz inequality and the Mean Value Theorem
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for integrals there is constant C independent of » and ¢ such that

1 e(n+m)
Liamargn)r < m |7 jamg (@) tomda
n en

Thus if
2M
[Bu)] = sup|(n)|* + sup M 3, [n"d"p(m) ",
then there is a constant C, independent of ¢ such that

(4) B,(3.) = C.A.(9) .

The main result of [3] actually shows that if a =8> —1/2 and
m = [a] + 2 there is a constant C, such that

(Ts). = C,B,(9) .
Thus the result follows from Theorem 1 and (4).
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