Pacific Journal of

Mathematics

MULTIPLIERS ON A BANACH ALGEBRA WITH A BOUNDED
APPROXIMATE IDENTITY




PACIFIC JOURNAL OF MATHEMATICS
Vol. 63, No. 1, 1976

MULTIPLIERS ON A BANACH ALGEBRA WITH
A BOUNDED APPROXIMATE IDENTITY

JOHN W. DAVENPORT

Let A be a Banach algebra with a bounded approximate
identity {e, | a€ 4}, and M(A) the multiplier algebra on A.
In this paper, we obtain a representation for M(A) such that
each multiplier operator appears as a multiplicative operator.
The proof makes use of the weak-* compactness of the net
{Te, | € A} and the algebraic properties of a multiplier.

1. Introduction. In 1951, J.G. Wendel showed that the left
centralizers on L,(G), G a locally compact group, was equivalent to
Cy(@)*, the space of regular Borel measures on G. Thus, if T is a
centralizer and z is any element in L,(G) then Tx = &+2 for some
Borel measure & It is also well known that if A is a Banach algebra
with an identity element then any multiplier on A4 is determined by
its action on the identity element. In this paper, we show that if
A is a Banach algebra with a bounded approximate identity then
there exist a continuous isomorphism of A such that each multiplier
defined on A is given by point-wise multiplication. In the case that
the approximate identity is uniformly bounded by one, the represen-
tation is norm preserving. Thus we obtain an isometric isomorphism
for all multipliers on L(G) and for all multipliers on any B*-algebra
such that the action of a multiplier is given by point-wise multipli-
cation by a fixed element in A.

2. The representation space for M(A).

DEFINITION 2.1. Let A be a Banach algebra and T a mapping
from A into A. The map T is a multiplier provided

(Ty) = (Tx)y (x,ycA).

Every multiplier turns out to be a continuous function and the set
of all multipliers on A under pointwise operations is a commutative
subalgebra of B(A), the set of all bounded linear operators on A{[5]).

NOTATION 2.2. In this paper, a Banach algebra with a bounded
approximate identity will be denoted by A and the multiplier algebra
on A will be denoted by M(A). For any Banach algebra X, we
denote the weak-+ convergence of a net in X*, the dual space of X,
indexed by a € 4, by “lim?**(-)’. Unless otherwise stated, we denote
the bound on the approximate identity by M.
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DEFINITION 2.3. Let X be a Banach algebra. The algebraX
is said to have a bounded approximate identity provided there exists
a net {¢,|®e 4} in X and a M > 0 such that

2.3.1 Jle. || <M (xe )
2.3.2 lim,ex = lim, xe, = x (xe X).

DEFINITION 2.4. Let {e,| @ € 4} denote the approximate identity
on A, and B, = {fe€ A*|f-e,— f} where f-a(x) = f(ax) for each
a,xc A and fe A*. The set B, is a closed subspace of A* and B, =
{f-a|fed* ac A} ([3]). By defining

2.41 [G f1=G(f-a) (@€ 4, feB,, GeB?)
2.42 F-G(f) = FIG, f] (feB., F,GeBY),

the dual space, B%, becomes a Banach algebra. This follows since
the above definitions are the restrictions to B, of the Arens product
on A** which makes A** into a Banach algebra such that if = is
the canonical embeding of A into A** then =& is an isometric isomor-
phism ([5]).

LeMMA 2.5. There exists a morm reducing isomorphism of A
wnto BE.

Proof. We define 7: A — Bf by za(f) = f(a) = 7a |5.

Clearly 7 is linear and since B, = {f-a|fec A* ac A}, it follows
that 7 is one-to-one. From |za(f)| = |f(a)| < || f]| - ||a]||, we see that
llza |l < |lal], for all ac A.

LEMMA 2.6. Let {F,|ac A} be a net in Bf;acA; and F, G € B,
then the following properties are satisfied:
2.6.1 if lim¥** F, = F then lim¥** F,-G = F-G
2.6.2 if lim¥** F, = F then lim***za-F, = t¢-F
2.6.83 if F-ta=0 for all acA or ta-F =0 for all acA then
F=0.

Proof. These properties follow from a straightforward applica-
tion of the definitions of the operations involved.

LEMMA 2.7. The Bamnach algebra B has an tdentity element
which we denote by J.

Proof. From ||ze,|| < |l e.ll < M, it follows that the net {re,}
has a weak-x convergent subnet. Let J = lim¥**ze,. Since

[/, f1(z) = J(f-2) = lim ze,(f -x) = lim f(ze,) = flx) ,
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for all 2 € A, we have that [J, f] = f for all fe B,. Thus F.J=F,
for all F e BX. Since za-F is weak-x continuous in F), it also follows
that J-F(f) = lim, ze,- F(f) = lim, F(f-¢,) = F(f) for all fe B, and
FeB:. Thus J-F = F for all FeB;.

THEOREM 2.8. Let A be o Banach algebra with a bounded ap-
proximate identity {e,| € A}. Then there exists a map ¢ from M(A)
into BE such that v is a continuous, algebraic isomorphism of M(A)
into B¥. Furthermore

o(Ta) = (uT)-za = ta-(#T) (acd, TeMA)).

Proof. Let TeM(A). Since ||Te.l|<||T|+-M, the net
{z(Te,) | ¢ € 4} has a weak-» convergent subnet in Bi. If {z(Te,)|gel}
converges to G and {z(Te,) | @ € A} converges to F, each in the weak-x
topology; then, for each fe B,, we have that

F(f) = lim o(Te,)(f) = lim =(Te.)-J(f)
= lim 1i§n tTe, -tes(f) = lim 1i§n (tTefe))(Sf)
= lim 1i§n e, tTes ) = im ze,-G(f) = G(f) .

Now we define the mapping ¢ from M(A) to Bf by
W(T) = F = lim =(Te,) (T e M(4)) .

The previous remarks show that 2 is well defined. We first observe
that if F' = p(T), then
ta-F(f) =limca-tTe(f) = lim cTa-ze,(f) = (Ta)f) .
Thus
2.8.1. 7a-u(T) = 7(Ta) (acA, Te M(A)).

By Lemma 2.7, the identity element of Bj is the weak-+ limit
of a subnet of {re,|acA}. Let {re;} denote this subnet. Hence we
have

t(T)-za(f) = lign tes T -7a(f) = 1i§n tes- t(T)-7a(f)
= lign tes-TTa(f) = tTa(f) .
Therefore,
282, uT-ta =tTa (ac A, TeM(A)).
Let 2, ye A and T e M(A). Then
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-t (TS)-ty = ©(TSx)y = tSx-tTy = uS-tx-puT -7y
=cx-puS-puT -ty

and thus by Lemma 2.6, it follows that g(TS) = n(S)-(T). But
C. N. Kellogg [4] proved that M(A) is a closed commutative sub-
algebra of B(A), the set of all bounded linear operators on A. Thus
HM(TS) = u(ST) = t(T)- (S) and therefore g is homomorphiec.

If 1(T)= p(S) for some T, Se M(A) where (T) = limy**zTe,
and 2#(S) = lim¥**zSe; then for each fe B,, and ac A, we have

(Ta)(f) = lim 7(Ta)-te,(f) = lim za-tTe,(f)
= ta-((T)S) = ta- US)(f) = za-lim =(Se;)(f)
= lign ta-7(Ses)(f) = lign t(Sa)-es(f) = «(Sa)(f) .

Since 7 is one-to-one, it follows that Ta = Sa for each a € A. Thus
u¢ is one-to-one.

From #(T)=1lim,tTe, and |[|cTe,|| <||Te. | <[T|-[le.ll <
| Tl|-M, it follows that p is continuous.

COROLLARY 2.9. If M =1, then M(A) is tsometrically =-isomor-
phic to a subspace of Bi.

Proof. This follows from Theorem 2.8 and the fact that
frall = llafl.

For A = L(G), G a nondiscrete locally compact abelian group,
the space B, is the space of uniformily continuous bounded functions
on G and BZ is the space M(G) of bounded measures of the maximal
ideal space of B,. If G is compact then M(A4) = M(G). In the case
that A is a B*-algebra, we have the following result.

COROLLARY 2.10. If A is a B*-algebra then M(A) is isometri-
cally =-ismorphic to a subspace of A**. Furthermore, if ((T) = F
for Te M(A) and F e A**, then

wa-F = F-ra =znTa (a e A)
where the above operation is the Arens product on A**.

Proof. D.C. Taylor [7] has shown that A*={f.a|fec A* ac A}=
{a-flfeA*, ac A}). Thus B, = A* and Bi = A**. In this case the
product operation on B} = A** becomes the Arens product and the
involution on A** is given by F*(f) = F(f) where f(z*) [2]. Since
a B*-algebra possesses an approximate identity uniformly bounded
by one, the result follows from Corollary 2.9.
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COROLLARY 2.11. Let A be o B*-algebra. Then F e A** belongs
to u(M(A)) if and only if the operator F commutes with A and
F-rwa is continuous in the weak-+ topology on A* for each a € A.

The author wishes to thank Professor C.N. Kellogg for his
encouragement and guidance.
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