Pacific Journal of

Mathematics

NONOSCILLATION THEOREMS FOR DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENT

TAKASTI KUSANO AND HIROSHI ONOSE




PACIFIC JOURNAL OF MATHEMATICS
Vol. 63, No. 1, 1976

NONOSCILLATION THEOREMS FOR DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENT

TAKASI Kusano AND HirosHI ONOSE

The asymptotic behavior of nonoscillatory solutions of a
class of nth order nonlinear functional differential equations
with deviating argument is investigated. Sufficient conditions
are provided which ensure that all nonoscillatory solutions
(or all bounded nonoscillatory solutions) of the eguations
under consideration approach zero as the independent variable
tends to infinity. The c¢riteria obtained prove to apply to
equations with advanced argument as well as to equations
with retarded argument.

1. Introduction. We consider the nth order funectional differ-
ential equation with deviating argument

(1) (raa(®)(ra—o)(- - - (ro(E)r(B)Y' @)Y - - -))) + al8)f (y(9(2)) = b(2) ,

where a(t), b(t), g(¢), r.(t), -« -, r._(t) are real-valued and continuous
on [z, ) and f(y) is real-valued and continuous on (—co, ). The
following conditions are assumed to hold throughout the paper:
(a) limg(t) = oo ;
{—oo

(2) (b) wf(y) >0 for y = 0;
(¢) rdt)>0 and ILLIOI} 0«t) = 0, where

o) = | 2=lhas, i =1, n -1, (o) = 1)
t Ti(s)
We note that the condition (2¢) is satisfied if
= dt .
3 S__ -, — 1, e —1.
(3) D < 1 n

We restrict our consideration to those solutions y(¢) of (1) which
exist on some ray [T,, ) and satisfy

sup{ly®)|:t, =t < o} >0

for any t,€[T,, ). Such a solution is said to be oscillatory if it
has arbitrarily large zeros; otherwise, it is said to be nonoscillatory.

In the oscillation theory of ordinary differential equations one
of the important problems is to find sufficient conditions in order
that all (bounded) nonoscillatory solutions of (1) tend to zero as
t— . Since the work of Hammett [3] this problem has been the
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subject of a considerable amount of study and a number of results
have been obtained. See, for example, Graef and Spikes [1], Grimmer
[2], Kartsatos [4], Kusano and Onose [5], Londen [6], Singh [7], [8]
and Singh and Dahiya [9].

The purpose of the present paper is to proceed further to add
some new results to this problem. First, in the case where a(t) is
oscillatory, we present conditions in order that all bounded nonoscil-
latory solutions of (1) tend to zero as t— . Secondly, in the case
where a(t) is nonnegative, we provide conditions which force all
nonoscillatory solutions of (1) to approach zero as ¢— «. Incidentally,
our results serve to strengthen recent results of Kartsatos [4], who
gave conditions under which every (bounded) nonoscillatory solution
of (1) satisfying (3) tends to a finite limit as ¢ — .

2. Nonoscillation theorems. We begin with two lemmas that
will be needed in the proof of our main results.

LemMmA 1. Consider the differential equation

0@, OB —
(4) Yot T et =0

where ¢(t) 18 continuous on [T, ), o(t) is continuously differentiable
on [T, ) and

o) >0, () <0, limoe@)=0.

Let u(t) be the solution of (4) on [T, o) satisfying w(T) = 0. Then,
lim,_., ¢(t) = ooJor —oo] tmplies lim,,, u(t) = oofor —oo].

Proof. The solution w(t) is given by the formula

u(t) = —p(t) S;g%z—;qs(s)ds , t=T.

If lim,., ¢(t) = oo[or —ceo], then it is obvious that

i (-, £0) = =tr 1.

Hence, by L'Hospital’s rule,

lim ) = tim |(—{, 50 (765 )|

= ltim #(t) = oofor —eo].

LEMMA 2. Let a(t) be continuous on [T, o) and let v(t) be con-
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tinwously differentiable on [T, o). If the limit lim,., [6(t)v'(t) -+
v(t)] exists in the extended real line R, then the limit lim,._ v(t)
exvists in R

Proof. If the conclusion is false, then there are numbers & and
7 such that

lim inf »(t) < & < 7 < lim sup v(¢) .

t—co t—co

We are able to select an increasing sequence {£,};2, with the following
properties:

(5) lim¢, = o, v'(t,) =0, yv=12 .-,

(6) Wty ) <&, w{tw) > 7, v=12 ..
In view of (5) we see that the limit
lim {o(t,)v'(t,) + v(t.)] = lim v(¢,)
exists in B However, this is a contradiction, since (6) implies that
the seguence {v(t,)}7., cannot have a limit in R*
We are now in a position to state and prove our nonoscillation

results. The following notation will be used: a'(f) = max {a(?), 0},
o (t) = max {—a(t), 0}.

THEOREM 1. Let the following conditions hold:

(7) | onttiar@pat = =,
(8) | oo ta @t < =,
(9) RGOy

Then, oll bounded monoscillatory solutions of (1) tend to zero as

b oo,

Proof. Let y(t) be a bounded nonoscillatory solution of (1). We
may suppose without loss of generality that y(¢) > 0 for ¢t = ¢. By
(2a) there exists t, = t, such that g(t) = ¢, for ¢ = £,. Thus, y(g(t)) > 0
for t = ¢. We define

(10 G@) =y@), G@)=rG(), i1=1--,n-1,

() wilt) = St 0rs S a(s)ds , k=01, o m—1.
t1
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An integration by parts yields

w®) = || 0, G (5)ds

= 0,406 — 01s(8)Gus(e) + || L= sy

— Oa )70 u(t) , _
= pn_k_l(t) pn—k—l(t)G _k—~1(t) pn—k(t1)Gn_k(t1)

+ | P )G (s)s

— _(On—k(t) ’ _
- p;_k(t)uk(t) + uk(t) pn—k(tl)Gn—k(tl) .

This shows that w,(t) satisfies the differential equation

Ou_ilt),r _ -
(12) p;_k(t)u u+ (t) =0,

or equivalently,

5 L)y OB 4y —
(13) U (On—k(t)u + (on—k(t)¢ (t)

where
$4(t) = Up_i(t) + Pn-i()Ga_i(2) .

Since u,(t,)=0 by (11) and since p,_,(t) >0, 0,_(t) <0, lim, ., 0,_(t)=0
by (2¢), we apply Lemma 1 to (13) to conclude that lim,.., u,_.(t) =
cofor — o] implies that lim,,, %,(t) = c[or —c]. Moreover, applying
Lemma 2 to (12), we conclude that lim,_, u,(f) exists in R* whenever
lim, ., #,_(t) exists in R*.

We now multiply both sides of (1) by p0,_(f) and integrate it
over [t, t]. Then,

[, o i@G(@ds + | 0, 8)a° )/ WolM)ds

(14) t t
= b5 + | os (@ F Woe s .

We distinguish the following two cases:

(15) | o O F wlatomat = =,

(16) | oo @)f et < o= .

Suppose (15) holds. In view of (8), (9) and the boundedness of y(t)
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the right-hand side of (14) tends to a finite limit as ¢ — o, so that
from (14) we see that lim,., u,(t) = —<o. Hence, by Lemma 1 applied
to (18) with £ =1, we have lim,,, %,({) = —co. Applying Lemma 1
again to (13) with k£ = 2, we find lim,._ u,(t!) = —o. Repeating the
same argument, we conclude that lim,., u,_,(f) = — oo, which implies
that lim,., 9%(t) = —o. This, however, contradicts the assumption
that y(¢) is positive. Consequently, (15) is impossible. Now, letting
t— co in (14) and using (16), we see that lim,., u,(t) is finite. From
Lemma 2 applied to (12) with & = 1 it follows that lim,.. u,(t) exists
in R% This limit must be finite, since lim,_., #,(t) = — o would imply
lim,.,, y(t) = —, a contradiction to the positivity of w(t), and
lim,_., %,(t) = o would imply lim,_.. y(t) = oo, a contradiction to the
boundedness of %(¢). Continuing in this way, we conclude that
lim,., %,_,(f) is finite. Therefore, lim,_. ¥(f) exists as a finite number.
On the other hand, in view of (2b), (7) and (16) it is easy to verify
that

lim inf y(g(¢)) = lim inf y(¢) = 0 .
t—o0 t—oco
Thus it follows that lim,.. y(¢) = 0, and the proof is complete.

ExAMPLE 1. Consider the equation
17) @y’ @)Yy +y(rty =71, t>0,

where 7 is a positive constant (possibly greater than 1). We have
0.(t) = p.(t) = ps(t) = t™* and see that all conditions of Theorem 1 are
satisfied. Hence, all bounded nonoscillatory solutions of (17) tend to
zero as t— co. In fact, y(t) = ¢t is a solution of (17) having this
property.

In the following theorem it will be shown that the conclusion of
Theorem 1 still holds if the roles of a™(¢) and o (¢) are interchanged.

THEOREM 2. All bounded nonoscillatory solutions of (1) tend to
zero as t— oo if the following conditions are satisfied:

(18) | puitiarrat < =,
(19) | iVt = ==,
(20) OO,

Proof. Let y(t) be a bounded nonoscillatory solution of (1) such
that y(g(t)) > 0 for t = ¢,. A parallel argument holds if y(g(¢)) < 0
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for t = ¢,. Define the functions G,(t) and u,(¢) by the formulas (10)
and (11). Assume that

Sj Pa(D)a” (O (y(g(EN)dt = o .

Then, letting ¢ — o« in (14) and using (19), (20) and the boundedness
of y(t), we obtain lim,.. u,(t) = <, so that applying Lemma 1 to (13)
with £ =1, we see that lim,., u,(t) = «. Repeated application of
this argument shows that lim,.. %, () = o, which implies that
lim,., y(t) = . But this contradicts the fact that y(¢) is bounded.
Consequently, we must have

|, or it @F WlaMdt < = .

The rest of the proof now proceeds exactly as in the second half of
the proof of Theorem 1. The details are therefore omitted.

ExampLE 2. Consider the equation
(21) (e'y'(1))" — e'y*(logt) =t7%", t=0,

which has a nonoscillatory solution %(t) = ¢™* tending to zero as
t— oo, It is easily verified that the conditions of Theorem 2 are
satisfied with 0,(t) = 0.(t) = 0s(t) = ¢7*. It follows that all bounded
nonoscillatory solutions of (21) approach zero as {— co.

Finally, we examine the equation (1) in which a(t) is nonnegative
and present conditons under which all nonoscillatory solutions are
necessarily bounded and approach zero as f— oo,

THEOREM 3. Let the condition (8) hold. Suppose that a(t) = 0,
lim inf,_. f(y) > 0 and lim sup,._.. f(y) < 0. If

22) [ oo traa = =,

(23) S“[b(zﬁ) 1t < oo,
then all monoscillatory solutions of (1) tend to zero as t— oo.

Proof. Let y(t) be a nonoscillatory solution of (1). We may
suppose that y(g(¢)) > 0 for ¢ = ¢,. Define G.(¢) and u,(t) by (10) and
(11). We shall first show that y(¢) is bounded above. From (1) we
obtain

@) G® = Gult) + | e WoeNds = | bads .
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Since the first integral of (24) is positive and, by (23), the second
integral is bounded, there exists a constant K,_, such that

Gost) = 7 (W)Grs(t) < Koy for t =,

Dividing the above inequality by 7,_,(t) and integrating from ¢, to ¢,
we get

Golt) = Gut) = K. 2

for t=>t
121 1"”_1(3) -

which shows, in view of (3), that there exists a constant K, , such
that

Goot) = 7, (D)Gs(t) = K, for t =4, .
Applying the above argument repeatedly, we have
G,st) K, -, GEt) S K, G(t) = K, for t=t,,

where K, _;, -+, K,, K, are constants. It follows that y(¢) is bounded
above for t = t,.

From this point on, we argue as in the proof of Theorem 1 on
the basis of the relation

@) | 0.6 @ + | 0. ©)a6) Wa6)ds = | o, (s)ole)ds

Noting that on account of (23) the right-hand side of (25) tends to
a finite limit as t — o, we can deduce from (25) that

(26) | o ia)s et < -,

since otherwise we could use Lemma 1 to obtain lim,.. u,(f) = —o
for k=0, 1, ---, n — 1, which implies lim,_, ¥(t) = — oo, a contradic-
tion. Next, using (25), (26) and applying Lemma 2, we can show
that lim,_.. %,(¢) is finite for each k4 =0, 1, ---, » — 1. Thus, lim,_. ¥(¢)
exists and is finite. On the other hand, from (22) and (26) we see
that liminf,.. y(¢) = 0. Therefore, we conclude that y(f) tends to
zero as t — oo. This completes the proof.

ExAMPLE 3. Consider the equation
(27) EEEY'@))) + ty(vt)y =7"%"*, >0,

where 7 is a positive constant. In this case, we have p,(t) =t
0:(t) = (1/2)t7%, pit) = (1/6)t~°. Since all assumptions of Theorem 3
are satisfied, every nonoscillatory solution of (27) approaches zero as
t— . This equation has a nonoscillatory solution y(t) = ¢
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EXAMPLE 4. Consider the equation

(28) (e'(e(e'y'())) + eyt + 0) = (24 + )", 120,

where 6 is a constant. This equation possesses ¥(f) = ¢™* as a non-

oscillatory solution tending to zero as t-— . It is easy to verify
that p,(¢) = 7, 0,(t) = (1/2)e™*, 04(t) = (1/6)e*, and the conditions of
Theorem 3 are satisfied. Therefore, all other nonoscillatory solutions
of (28) also tend to zero as t— .
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