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Let Y be a strictly convex Banach space. Then norm
attaining operators mapping L[0, 1] to Y are dense in the
space of all linear operators from L*[0, 1] to Y if and only
if Y has the Radon-Nikodym property.

Bishop and Phelps [1] have asked the general question—For
which Banach spaces X and Y is the collection of norm attaining
operators from X to Y dense in the space B(X, Y) of all bounded
(linear) operators from X to Y. Lindenstrauss in [8] investigated
this question and related this question to existence of extreme points
and exposed points in the closed unit ball of X. In the course of
his paper Lindenstrauss showed that for some space Y the norm
attaining operators in B(L'[0, 1], ¥) are not dense in B(L'[0,1], Y)
due to the lack of extreme points in the closed unit ball of L0, 1].
Left open is the following question: For which Banach spaces Y
are the norm attaining operators dense in B[LY0, 1], Y)? Based on
Lindenstrauss’s work, one is led to believe that if the closed unit
ball of Y has a rich extreme point or exposed point structure, then
the norm attaining operators may be dense in B(LY0,1], Y). On
the other hand the Radon-Nikodym property is intimately connected
with extreme point structure (Rieffel [12], Maynard [10], Huff [6],
Davis and Phelps [2], Phelps [11], Huff and Morris [7]). So there
is some prima facie evidence to support the belief that the norm
attaining operators are dense in B(L'0, 1], Y) if and only if ¥ has
the Radon-Nikodym property. The purpose of this paper is to verify
this for strictly convex Banach spaces Y.

PFirst a few well known results will be collected.

LEMMA A [4,5]. If (@ 2, 10) is a finite measure space and
9: Q— Y is p-essentially bounded Bochner integrable function, then

T(f) = Bochner — gfgdp
defines a member T of B(LNp), Y) with || T|| = esssup || g|ly.

LEMMA B [3]. Any one of the following statements about Y
vmplies all the others.

(i) Y has the Radon-Nikodym property.

(ii) If (2, 2, 1) is o finite measure space and G: 3 —Y is a
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p-continuous countably additive measure of bounded variation, thenm
there exists a p-Bochmner integrable

9: 0 — Y with G(E) = S gdpt for all Ecs .
E

(iii) If p 4s Lebesgue measure on [0, 1], then for each
T e B(L'0, 1], Y) there is a p-essentially bounded g:[0, 1] — Y with

() = S[O’ﬂfgd# Jor all f e LY[0, 1], Y)

Moreover, if Y has the Radon-Nikodym property statement (iii)
18 true for any finite measure space.

The first theorem is a straight forward observation that is based
on the definition of a measurable function.

THEOREM 1. If Y has the Radon-Nikodgm property and if
(L2, X, 1) is a finite measure space, then the norm attaining operators
are dense in B(L'(y), Y).

Proof. Let T € B(L'(¢t), Y) and ¢ >0. Then there exists an essen-
tially bounded Bochner integrable ¢g: 2 — Y such that T(f) = S fody
for all f e L'(x¢) and there exists a countably valued function

We——X, h=3ul,, wneX,
EeX, E)>0, ENE =0

for 1+ j, such that esssup|/g — k| < ¢/2. Define T,;:L (p)— Y
by 7(/) = | fhdp, £eLip). Then || T — T, < (:/2).

Now T, will be approximated within ¢/2 by an operator which
attains its norm. If T, = 0, there is nothing to prove. Otherwise
B =sup|ly;|| > 0. Choose % such that 8 —[[y, ]| <¢2 and a >1
such that ¢/4 < (a — 1)y, || <¢/2 and define

)=\ fhde+av, || fap.
UE; £y,
i
It is easy to verify that || T, — T, || < ¢/2 and that || T,|| = a(ly,, || =
|| T@z,/t(E,,))||. Hence T, attains its norm and ||[T — T,|| <¢, as

required.
The operator T, constructed in the proof of Theorem 1 has two
important properties. First it attains its norm and second there
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exists Eel, (E)>0 and y,€¢Y with [jy, /| =||Tl and T«Sfz,) =
S fdpy, for all feLYy). If Y is strictly convex and real, this
E

property is shared by all norm attaining operators in B(L'(y), Y).

LEMMA 2. Let (2,23, 1) be a finite measure space and Y be a
strictly convex Banach space. Iy T e B(LYp), Y) attains its morm
then there exists a set K, X with (f) > 0, ge L°(¢) with |g| =1
on E, and y,€ Y with ||y,|| = || T\ such that

T(fxz,) = SEO Sodry,

for all f e LM(p).
If 'Y is a real Banach space, g may be taken as the constant
Sunction 1.

Proof. If || T| =0, there is nothing to prove.

Otherwise, choose f,e L'(y¢) with || T(f) i = || T| and || f,]| = 1.
With the help of the Hahn-Banach theorem, choose y*e¢ Y* with
iyl =1 and

yT(f) = 1T 1 =1 T1 .

Next choose h e L=(¢) with || &|l. = || Tl such that
yiT(F) = | fhdpe

for all fe L(¢#). A simple computation reveals that & = sga f,|| T ]
on the support of f,. (Here sgn f, = f,/|f,|.) Let E, be the support
of f,. Thus if fe Li(p),

W) = |, FSERA|T dpe.

20

Next suppose K C K, Kc2 and (({F), t{E, — E)> 0. (The rest of
the proof is trivial if K, is an atom of f+.) Then

yS‘T<Z—ESgnfo>=S Le_\iTidp =T,

1K) ry U E)
% Xeg—£ . Ay | J .
Yo T<X(E’7_) Sgnf0> = SEO m {\ Tg‘d‘.’.é =T,

and
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From these equalities, one obtains

T () = || T(Yx, sgn f) | = [| T(xz 820 f3) + T(Xe,—5 5€0 1) ||
< Tz, sgn f)ll + | T(xzy-z 8580 10) ||
=T i(E) + || T| (B, — E) = || T|| i(E,) .

This combined with the fact that Y is strictly convex shows that
T(xzsgnf,) and T(Xz,zsgnf,) are multiples of each other. Since
T((z, 521 f)) = T(Azsgn o) + T(Az,-= 880 fo), T(Xzsgn f;) is a scalar
multiple of T(yz, sgn fy); i.e., T(Xzsgnfy) = YT()z, sgn f)) for some
scalar 7. On the other hand

T || i E) = ys T(xz sgn fo) = Yys(Xg, sgn fo) = 7 [ T || (L) ;
thus v = p(E)/(E,). Therefore if EcC E, and p(E) > 0,

T(rzsgnf) _ T(tz,sg0nf) _
W(E) L(Ey)

Now suppose fe L'(y¢) is a simple function. Let ¢ >0 and choose
a simple function @ € L*(¢) such that ||sgnf, — ¢|l. <e. (Here sgnf,
is the complex conjugate of sgn f,.) Then T(f) = T(fsgn f,sgn f,) and
IT) — T(fpsgnf)ll = ([ Tl |isgn fosgn f, — psgnfill, < el T #2.
Now select sets 4,, ---, A, €2 such that

Yo

f= gaﬂ&i and @ = ;.31‘%,1,- .
Then

T(XA,; N E, sgn f,)
(A N Ey)

= % a;BiA; N E)y, = SE Sedry, .

T(fp sgn foXEo) = g;l a8, A N EY)

Letting £ go to zero reveals that

T(1s) = |, F3E0 fidim

Since simple functions are dense in L'(#), the equality

T(1s) = |, F588 Fidpn

obtains for all fe L'(#). This proves the first statement.

To prove the second statement, note that if Y is real, then
sgn f, takes on only the values +1 or —1. If sgnf,=1 on a set
of positive measure F, in the support of f,, take E, = E and proceed
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as above. If sgnf, = —1 almost everywhere in the support of f,,
multiply f, and y¢ by —1 and proceed as in the last sentence.

With the help of Lemma 2, the main result becomes nothing
but a straightforward exhaustion argument.

THEOREM 3. Let Y be a strictly convex Banach space. If the
norm attaining members of B(L'[0, 1], Y) are dense in B(L'[0, 1], Y),
then Y has the Radon-Nikodgm property.

Proof. Let T e B(LY0,1], Y) and ¢ > 0 be given. Define a class
of Lebesgue measurable sets .# by agreeing that Eec_# if there
exists an essentially bounded Bochner integrable g(=g(F, ¢)): [0, 1]—Y
such that

|7 = | fodpe| < 1l 70

Note that if A is Lebesgue measurable and Ac EFe_# then

Il

(70 = | fo(B, 9| = || Trrons) ~ | (rrear]

S Ufaxell = el frall

Therefore, if EFe_#, every measurable subset of E belongs to _#.
Now let &« = sup {{(F): Ee _#'} and let (E,) C _# be a sequence such
that lim, (E,)=«a. Write A, =K, A,=E,—FE, ---, A,=E,—U"='E..
Then the A,s are disjoint, Uy 4, = U=, E, and p(Us. 4,) = «.
A,CcE,and E,c _# A,c_# and there exists a sequence of essentially
bounded functions g,:[0,1]— Y, =12, -+, such that for all
fe Lo, 1],

|70 = | foudee| < el pa, .

Aceordingly,

. o] < 1701+ Sl il = AT+ 9117

By Lemma A,

!

ess sup || g2, || — sup f

[, fode] =170+

Therefore sup,esssup||g,]| < ||T] + ¢ Now define g:[0,1]— Y by

g.(t) for teAd,

t: o
o) {o tor teUA4,.
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Then esssup||g|| < || T + ¢ and if fe LYO0, 1],
TG, — | fodr)

=

5T - |, o

=Sellf, el FlL.
Therefore |J, 4,€.# Next we shall see that ¢ (.4, = 1. For,
if p(U,4,) <1, then (U, E,) =<1 and a<1. Set B,=][0,1] —
U.. 4. and recall that LY(B,) (Lebesgue integrable functions supported
on B, is isometric to LY0,1]. Define T,:LYB)— Y by T.(f)=
T(fys,) for feL'E). Since L'(B,) is isometric to L'[0, 1], there
exists an operator T,: L'Y(B, — Y that attains its norm such that
HTl"‘ Tz” =&

An appeal to Lemma 2 produces a %, €Y and set B, c B, with
1(B,) > 0 such that

T4f) =, fawu.
for all fe LY(B,). Set ¢ = y,xs. Then

|TG1n) = | fods| = 1| TF1w) = T Fn) |
< T = Tl sl = € 11725, s
Therefore B,e _#. Now set §=g¢g + 9. If fe L0, 1]),

\TCGLg gn) = |2 sy

U 4aUB;

T(fYa,) — Lnfg“d“ H + ‘[ T(fAs) — SB fg'd”

1

=53
T am

< e 3Ll + 152,11 = 125 anss ] -
Therefore |J, A4, UB, = U. E, U B e._# But
#(UE, UB)=u(UE,) + uB)
> lim w(E,) + (B) =a + B) > «
contradicting the definition of @. Thus ¢ (U. 4.) =1 and

|75y = | foap]|= < f1l. for all e L0, 1.

Finally, to check that Y has the Radon-Nikodym property, let

fo,1]
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9,: [0, 1] — Y be a sequence of Bochner integrable essentially bounded
functions such that for all fe L[0, 1]

|7 - | sedu| s 1niisil

for all ». An appeal to Lemma 1 shows that lim,,, ess sup || g, — . |
Hence there exists a Bochner integrable essentially bounded g¢: [0, 1]—Y
with lim,esssupl/g, — ¢g]| =0. If feL'0, 1], the dominated con-
vergence theorem guarantees that

7(f)—tim | fodp=| fodp.
Thus Y has the Radon-Nikodym property by Lemma B.

The role of strict convexity seems to be crucial in Theorem 3:
for by perturbing co-ordinate functions it is seen easily that norm
attaining operators are dense in B(L'[0, 1], ¢,), B(L'0, 1], 1) or for
that matter B(X, [*) for any Banach space X. See [8, Prop. 3].

On the other hand, the role of strict convexity could be made
even more palatable by an affirmative answer to an old question of
Diestel’s: Does every Banach space with the Radon-Nikod§m property
have an equivalent strictly convex norm?

COROLLARY 4. If X s a strictly convex remorming of L'O0, 1],
then the norm attaining operators are not dense in B(LY0, 1], X).

Proof. Evidently X lacks the Radon-Nikodym property.

This leaves unsolved the question of whether the norm attaining
operators are dense in B(L'[0, 1], L'[0, 1]).

Finally say that a Banach space X has property B if for every
Banach space Y the norm attaining operators are dense in B(Y, X).
Lindenstrauss [8, Proposition 4] has observed that if there is a non-
compact operator in B(c, X) and X is strictly convex, then X lacks
property B. It is not difficult to see that if X has the Radon-
Nikod§ym property, then every operator in B(c, X) is compact and
that the converse in false. Thus Theorem 3 is a better test for
Property B than [8, Proposition 4]. Of course this brings up a
question that is well beyond the scope of this note. If X is a strictly
convex Banach space, does X has property B if and only if X has
the Radon-Nikodym property?

The author is happy to acknowledge helpful discussions with
Professor J. Diestel and a helpful comment from Professor T. Figiel.
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