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FUNCTIONS
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A pivotal point for certain problems in probabilistic
number theory is that there exists a positive constant ¢ such
that for every member f of the family of additive complex
valued arithmetic functions

m,z‘..” | flm) — A(n) |* = enD*(n)

where
A(n) = E S(@)p*(1 — p7Y)
and
D) = aZ [ fleo P pel—p7Y),

pEsn

p* being a power of a prime number. This paper considers
the extension of this property in two directions suggested
by Harold N. Shapiro. First, an investigation is made of
when this property holds for weight functions other than
w(m) = 1. Second, it is shown that this property can be
extended to various nonadditive arithmetic functions.

1. Preliminaries. Let p and ¢ represent prime numbers while
m, m, v, @ and B represent positive integers. Nonnegative weight
functions are represented by w and complex valued arithmetic funec-
tions by f. Then f is said to possess the Variance Property with
respect to w if

D 3 w(m) | ) — A [ < oD* (n) 3 w(m)

for all n for some fixed constant c(w, f), where (letting v || m denote
p*|m but p*** f m for all p* in the prime decomposition of )

2, w(m)
(1.2) 7() = lim 7(, n) = lim W ,
(1.3) An) = 3 f (»)7(»%) ,
and p
(1.4) Di(n) = ngnl Sy (v -

For a given weight function w = w(m), we let @(w) represent
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the set of arithmetic functions such that (1.1) holds. We associate
with a given family of weight functions 9%~ the set of arithmetic
functions @(277) = Nue» P(w). Similarly for a given f let 2(f)
denote the set of weight funections w such that (1.1) holds, and for
a collection of functions & define A F) = Ny~ AS). When assert-
ing that (1.1) holds, the constant ¢ may depend on both f and w
(but not on n). A subset of @(%7") is said to possess the Variance
Property uniformly with respect to 97 if one constant ¢ can be
used for all the functions involved. Similarly, a subset of 2(.%) is
said to possess the Variance Property uniformly with respect to &#
if one constant ¢ can be used for all the functions involved. In this
terminology the basic Variance Theorem cited in the introductory
paragraph [1] concerning the set % of additive complex valued
arithmetic functions (i.e., functions such that f(mn) = f(m) + f(n)
if (m, n) = 1) asserts that .o possesses the Variance Property uni-
formly with respect to the weight function w(m) = 1.

2. Subfamilies of 2(.87). Let
% = {w(m): 7(p*, 1) < ¢,¥(p®) for all p* and n, and for some c(w)} .

Theorem 2.1 gives two alternative sufficient conditions that will
guarantee that a member of 977 possesses the Variance Property
uniformly with respect to the set of additive functions; the remark
at the end of this section shows that an averaging of one of these
conditions is a necessary condition. Theorems 2.2 and 2.3 show that
w(m) = m” (for any fixed real number r) and w(m) = r™ (for some
fixed r, 0 < r» < 1), possess the Variance Property uniformly with
respect to .57,

LeMMA. Let we %7, and fe.% Then fe@w) if and only
of
(2.1) | > F@)f@)HT®" ¢%, n)| < ¢, D¥(n)

p2<n,qfzn
PFq

for all n and some fixed c¢,(f), where

T(p% ¢*, n) = 7(p°¢®, n) — Y(P*)¥(q? n) — Y(@*)¥(p%, n)

2 + 1(»)7(¢°) .

If (2.1) holds for all f e .5 them &7 possesses the Variance
Property uniformly with respect to w if and only if ¢, can be chosen
independent of f €.
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P/I"OOfo st'n w(m) | f(m)_A(n) 12 =(R1+R2+R3) Emsn w(m) Where

R, = Z !f(pa) I2 7(1’”) 1’&) ’

2=

R,= 3 f@)F@) (@) (0°) — 7(0)1(p?, n) — V() (% n)) ,

p"‘ls"b
ﬁs[lgg:
and
B,= 3 o F@)F@)T®, ¢°, n) .
pX<n, ¢gP<n
pFEq

Now we %, implies |R,| £ ¢,Dn) and (by using Schwarz’s ine-

quality)

| R, | = max (1, 2¢,) aisln [ F@I P 3

log »

=< max (1, 2¢,)D*(n) ,

which completes the proof.

THEOREM 2.1. Let we %, be such that either
(2.3) Z | T(p ¢%, n)| = ¢ 7(p%)

q Sn
q97P

Jor all n and all p* < n, for some constant ¢, or

(2.4) T*(p*, ¢, m) <e

p¥<n, ¢Bsn 7(1)“)7((15) =
7(p%)%0, 7(qB)#0
g

Jor all n. Then w possesses the Variance Property uniformly with

respect to

The proof follows immediately by applying Schwarz’s inequality

in two different ways to the left hand side of (2.1).

THEOREM 2.2. The weight function w(m) = m’, where r is any
fized real number, possesses the Variance Property uniformly with

respect to % For this weight function
1 —p) f r=-1

(2.5) (p%) = ol — ) if > 1.
Proof. Let
Z w(k) >k
(2.6) Ay, ) = g pre —yr 5294‘/,,]67

k=n k=n
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so that

2.7 7(p%, n) = Mp%, n) — Mp*, n)
and (for p == q)

Y(p°q?, n) = Mp°¢%, n) — M g%, n) — Mp°¢°*, n)

2.8
&9 + MpTg, )

Using elementary calculus we obtain the following inequalities:

1 ‘ r/(r + 1) for r< -1
log x 1+ logux for r=—1
9 wr+1 1 < wr+1 f 1 < < 0
— 7 o r -—
s Ry YL, oy ° "
A 2" iy + 2" for r=0
r+1 r+1

(where the term —272" may be omitted in the » = 0 case if x is
an integer). For r = —1 this result provides upper and lower bounds
for My, n) which show that

yv' for r< -1,

. )Y = lim M =
(2.10) () = lim M, ) {»—1 A

where, for » < —1, the result follows from the convergence of 3 k",
(2.10) and (2.7) now yield (2.5). Also, the upper bounds on \(y, n)
show that

(2.11) Yy, n) < My, n) = %cox(v)

for some ¢, = ¢,(r). Thus we see that we 7%, since
(2.12) M) £ 27(p%) .

We note that Mp%¢®) = MpY)M@?), and hence as a result of (2.2),
(2.11) and (2.12)

> T4 m) g : .
A<y n-——’—’— = + ¢ >\' )" #
4 ;;ﬁ?f ,Y(pa),y(qp) ( 0) pﬂé%qﬂgn (p ) (q )

p%gb>n

Sdl+ayr > L
psa, gbsa P°QP
%8> n
which is known to be bounded [1]. All that remains to verify (2.4)
is to show
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T*(p%, q*, n)
2.13 S = T (P
(2.13) wiaizn V(0°)7(2")

is bounded. Then the desired result will follow from Theorem 2.1.
For » < —1 we note that
S =41 + ¢) 2 MPIMG?) = 8(1 + ¢ 2 k"

Plieﬁ‘ﬂ kEZn
2 al'd

which is bounded. In view of (2.6), (2.7) and (2.8), for r = —1 and
p # q we have

U= T, ¢ n) 2k
ksn
— praqrp Z kr — pr(a+1)qrﬂ Z kr

k<nl(p%qh) k=nl(p2tiqh)

__p'raq’r(ﬁ+1) Z k'r + pr(a+1)q'r(ﬁ+1) 2 kr

(2_14) k=n|(p%ghtl) ksni(patightl)

—p AL —pg? X K+ p (1 —pNgY > K
k=niqf ksni(ghtl)

___q ﬁ(l — q—l)p'ra Z k'r + q ,9(1 — q—l)pr(a+1) Z kr
ksn|p® E<nl(patl)

P — P — YK

Using the inequalities of (2.9) on (2.14) to find upper and lower
bounds for U, and then applying (2.9) to the factor > k" of U in
order to obtain upper and lower bounds for T(p% ¢*, n), we find
after lengthy but straightforward calculation that, for » =2 and

»+q

— %  for r=—1
p*q? log n
(2.15) | T(p% @°, n) | = <{elp°¢’) _
o/ for r=0
for some ¢y(r). Actually, for the case where » = —1, the calculations

leading to (2.15) assume p**'¢’** < m, since the appropriate inequality
of (2.9) used in bounding U assumes 1 + log n/p*"i¢?** = 0. But we
may only assume p%¢® < n in showing S is bounded. However, if
gt < n < pa+1qﬁ+1’ then

1 n
l pa+1qﬁ+1<l + IOg pa+1q5+1)
1
= gt s B w5 gy

Similarly, all the other special cases do not affect the result given
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by (2.15).
For » = —1, (2.13) and (2.15) yield

4c? 1 4c; ~«Y _ O(loglog m)?
S< 4o < 4o ( ) — Olog log n)*
T log?m oisn p7@f T logim pag‘ﬂ p log®n

which is bounded.
For —1 < r <0, (2.13) and (2.15) show
S < O(n—Zr 2) 2 (p qﬂ)l-I-ZT < O(n—zr 2) Z kl—‘—2r

< qqeén ksn
which is bounded ((2.9) yields this for —1 < » < —1/2, and k''* <
7'** implies the bound when —1/2 < r < 0).
For r = 0, (2.13) and (2.15) show

S = O0(n™) Z p’¢? = O(n™) 3,1 =0(1).
p%gB<n R
PHq

Thus S is bounded for all values of », which finishes the proof of
the theorem.

THEOREM 2.3. The wetight function w(m) = r™, where r is a
fixed number, 0 < r < 1, possesses the Variance Property uniformly
with respect to % For this weight function,

R
2.16) ) = e st
Proof. Let
m%b w(m) > () _ — polnis]
)\4(” ,n) — vim — kZn|y — y—1 1 r 1 r
’ PIRICONEEDYE 1—r 1—9"

Now Y(p%) = lim, .. (\M(p%, n) — Mp""", n)) yields (2.16). Also (v, n) <
My, ) = 7t and (2.16) imply

(L~ Py, m) = (L= 7)™ = 7(7) < 77

which shows that we %, and (cf. (2.2)) | T(p% ¢° n)| < dr»*+9°-2,
Thus

T ) of 5 ) - o).

srsmabze V(p?)7(qf) PN

The desired result now follows from Theorem 2.1.

REMARK. Assume we %, Then a necessary condition for w
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to belong to 2(.) is

(2.17) LS, TON ¢ m) | S0 3 V).
This follows from the lemma by use of the additive function de-
termined by f(p%) =1 for all p=~.

3. The Variance Property for nonadditive functions. In this
section attention is restricted to weight functions which possess the
Variance Property with respect to .2 The reason for doing so is
the fact that any arithmetic function ¢ can be written as g=f + h
where

(3.1) f(m) = ,,a%,, 9(»%) ;
then A(n) and D*n) are the same for ¢ and f, and f is additive.
Thus, the results of §2 apply to f. In the rest of this section f
will always represent the purely “additive” part of g while & will
represent the purely “nonadditive” part of g.

Theorem 3.1 gives a necessary and sufficient global condition
(in the sense that it involves the average value of |k|) for h to
satisfy in order to have g possess the Variance Property with respect
to a weight function w. Its corollary provides a local sufficient
condition (in the sense that it involves the specific values of h).
Remark 3.1 shows that in general this local sufficient condition cannot
be substantially improved upon, and that in general there is a “gap”
between the local sufficient condition and a local necessary condition.
However, Remark 3.2 shows that in specific cases the local sufficient
condition of the corollary can be improved, and the gap between it
and a local necessary condition can be reduced almost to the differ-
ence between a small “o” relation and a big “O” relation.

THEOREM 3.1. Assume we (). Then ge@w) if and only if
(3.2 3 wm) | h(m) = O(D¥) 3, w(m)) .

The proof follows directly from (1.1).

COROLLARY. Assume we2(.57). Then gc®w) if

(3.3) h(m) = O(D(m)) .

REMARK 3.1. Consider the weight function w(m) =1. Then
| kh(m)| = O(V'm D(m)) is a necessary condition for ¢ = f+ h to belong
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to &(w). For if there were a sequence of integers m,— o such
that

2 hmg)

m;, D*(m,) - m, D*(my)

~——» OO

this would contradict the fact that g e @(w).
Now if we examine the function

4 if m=2
g(m) = {V'm if m = 15*
0 otherwise

we find that A(r) = 1, D*(n) = 4, and g€ ®(w). Thus the necessary
condition |A(m)| = O(V'm D(m)) cannot be improved.

On the other hand, if we let f be the additive function de-
termined by setting f(p*) = p™** so that 1/8 < D*n) = O(1), and
define

0 for m = p*
h =
(m) {m“D(m) otherwisge
for a > 0 fixed, then it follows from Theorem 3.1 that g =f -+ h
does not belong to @(w). To see this, note that

S h(m) P = % S ome > onitee

for some fixed constant 6 > 0. Thus we see the sufficient condition
(3.3) cannot be substantially improved either.

REMARK 3.2. Consider the weight function w(m) =", 0 <r <1.
Then |k(m)| = O(r~™2D(m)) is a necessary condition for g to belong to
@(w) since Theorem 3.1 and the existence of a sequence of integers
my, ~— oo such that

222, TR e
Dm 33 ™ - D¥(m)

m=my,

would imply that g did not belong to @(w).

On the other hand, |A(m)| = O(a(m)r "?D(m)), where a(m) =0
and Y a(m) < o, is a sufficient condition for g to belong to @(w),
gince in this case

3" k) | = O(D) 3, alm) = O(DHw)) .
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Thus we see that for these weight functions the sufficient condition
(3.3) can be improved, and the difference between the necessary
condition and the sufficient condition is almost the difference between
a small “0” relation and a big “O” relation.
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