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Suppose that A is a uniform algebra on a compact set
X and that φ: A -» C is a nonzero multiplicative linear func-
tional on A. Let Mφ be the set of positive representing
measures for φ. If Mφ is finite dimensional, let m be a core
measure of Mφ. The space H1 is the closure of A in L^m).
The space H00 is the weak* (i.e. σ(L°°9 L

1)) closure of A in
L°°(m). The weakly compact sets R in ϋ 1 are then those sets
such that for all ε > 0 there is a bounded set in H°° which
approximates R up to e.

It is well known (see Gamelin [1] for all details) that if m is a
core measure in the finite dimensional set Mφ, then the annihilator
N of A (or Re A) in the real Banach space LR is finite dimensional,
and is in fact a subspace of LR (see Gamelin [1] p. 108). Since N
is finite dimensional there is a constant Kx such that | |flr | |i^| |0| |oo<;

for all geN. There also exists a linear projection P of LR

onto N, the kernel of P being precisely Re A.

I am very grateful to the referee who pointed out an error in
the first draft of this paper and gave a simplification of the proof.

2. Weakly compact sets in HK The notation used in the
proof of the following theorem is the same as in the introduction.

THEOREM. If RCLH1 then the following are equivalent
( 1 ) R is relatively weakly compact in H1

( 2 ) Vε > 0 3Λf such that VfeR igeH™ with \\g\\.. ^ M and
\\f-g\\^ε

( 3 ) Vε > 0 1M such that Vf eRlg e A with \\g\\ £ M and

Proof. (3) =» (2) obvious, (2) =* (1) follows from general argue-
ments due to Grothendieck ( [ 2 ] p. 296); (1)=^(2) is less trivial.
Without loss of generality we may suppose that for all / e R we
have | | / | | i ^ 1. From now on all calculations are made with fixed
/. It is clear that all bounds only depend on | | P | | and Kx. Since
l o g Ί / 1 ^ I/I it is obvious that | | log+ | / | \\x ̂  | | / | | i ^ l . Since L J , -

Re A 0 N we also have uniquely determined elements u e Re A and
veN such that log+ \f\ = u + v. Since v is the image of log+ | /1
by the operator P we have
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IML ^ KΛ\V\I <L KA\P\\ HiogΊ/l I! S κx-\\P\\ = κ2.

The conjugation operator* is defined on Re A and takes values in
Lp(0 <p<l), hence 3JBΓ8 such that \\*u\\ιΛ ^ uT3|Wli. The function

eu+i** i s w e l l defined and fe-*'*'* 6 iϊ0 0. Indeed:

= e

v

Hence / = F-eu+im% with ||F||co ^ # 4 . The next step is the approxi-
mation of eu+i*u by functions in H°°. First remark that u = log+1 /1 —
v ^ — Kz. Put un — min(u, n) ^ — K2 and un ~wn + vn where wn s Re A
and vneN. We first prove that:

( i ) llβ^+' Heo ̂  Mn where Mn is independent of 16
(ii) \\eWn+ίWn — β»+**«||χ —• o uniformly in u as n—> oo.

Proof of (i): Since log+ | /1 = ^ + v we have

Hence eu ^ K4-\f\ and so the family eu is equally integrable (Here
it is used that relatively weakly compact sets in L1 are equally
integrable (see [2] p. 295).) Consequently eUn—*eu uniformly in u.
Since vn = P(uΛ-u) we also have Wv^U^K.WvJl^KrWPW \\un -u\\x£
K2 for n large enough. Indeed since — K2 ^ un ^ n ^ log+ | /1 + K2 ^
I /1 + K2 we have that the functions u form an equally integrable
family and hence un—+u uniformly in u. All this implies

Proof of (ii)

Here is

In the proof of (i) it was already observed that \\Bn\\1~+0 uniformly
in u. For n large enough one has

Since H^IU S K2\\un — u\\ -* 0 uniformly in u one has ||CΛ | |j. ^
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e*||i \\e°n — 1|U —*• 0 uniformly in tt. Remains to show that

Put En = {x\\ *u(x) — *wn(x)I ^ δ} where δ > 0 will be conveniently
chosen.

U B = [ A, + f Aw rg \ 2eu + \ c e u \ e ^ - "« | .
J Jtfn jEc

n }En ύEc

n

Since

ί ^ ([\*u - *wn\
1/idmj ^

^ δm(EnY

one has m(En)—+0 uniformly in u, hence by equally integrability of

eu it follows that \ 2eu —> 0 uniformly in u. Also
JEn

and hence || AJ|, ^ δif, + 2 ί β\

The first term is made small by choosing δ, afterwards we
choose n to be sure that the second term is also small enough, since
this can be done uniformly in u the proof of (ii) is complete.

Fix now ε > 0 and let n be large enough to assure
||β«Λ+i*«Λ _ e'+'^ll S e/KA. It then follows that

Taking M = Mn-K4 = K?en will do the job.
To prove that (2) => (3) we only have to observe that the unit

ball of A is dense in the unit ball of H°° for the L1 norm. Since
m is a core point, m is dominant and we can apply the Arens-Singer
result ([1], p. 152, 153).
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