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ABSOLUTE NORLUND SUMMABILITY FACTORS
FOR FOURIER SERIES

G. D. DIKSHIT

In this paper a general theorem on the absolute Norlund
summability factors of a Lebesgue-Fourier series at a given
point has been established. The theorem exhibits the potency
of a Norlund method as a tool to study absolute summability
and the absolute convergence of Fourier series. Several
existing results in the field are deduced as special cases. This
also shows some sort of continuity amongst these theorems
which otherwise seem apparently to be disconnected.

1. Let {p,} be a sequence of constants such that
P,=p,+p,+ ¢ +9,#0, for n=0,1,2, -..,

Given a series >, u, we define {t,} of its Norlund means by

£, = ; S Pt

n

The series Yu, is said to be summable | N, p,| and we write Ju, €
|N, p,|, if the sequence {t,}ebv, that is 3|4, = X|¢t, — t,..] 1S
convergent.

In the special case when p, = I'(n + k)/T'(k)['(n + 1), k > 0, the
summability |N, p,| reduces to the familiar Cesaro summability |C, k|
and when p, = 1/(n + 1), it is the same as the absolute harmonic
summability.

2. Let f be a periodic function with period 27 and let fe
L(—=z, w). Let the Fourier series of f at a point x be given by

fx) ~ %ao + ff‘ (@, cos nx + b, sin nx) = f‘, A (x) .
1 0
Throughout the paper we use the following notations:

o(t) = —;-{f(x )+ fl@— b)),

O(t) = §(t)
(t) = 7;(% ¢t — wy—p(w)du, @ > 0,

$u(t) = I'(a + 1)t7°@ (), « = 0,
G(n,‘t) = P;‘ﬂZ_1 Di€ar ™,
(1]
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9(n, t) = Im (G(n, 1)),

Hn, ) = F(lewcnl + = S al) + 22
where 7 = [1/t] and m = [(1/2)n],
J(n, t) = 7,_51:7;). St(w —~ t)-«:‘?_g(n, wydw, 0<a <1,
Ln, t)=T(_1+—DSR L, wdn, 0 S @ < 1,
_ 1 t
Vin, t)—mg —J(n wdu, 0 < a <1.

K, K, K,, ---, denote absolute constants not necessarily the same at
different occurrences.

B denotes the class of bounded sequences and

# denotes a class of positive and nonincreasing sequences:

/Z:{Sﬂ‘sn>0,—s”—“§ Bata él}'

Sn Snt1

3. Since the publication of the classical theorems of Bosanquet
(I3], [4]) on absolute Cesaro summability of a Fourier series in
1936, various results have been worked out on absolute Cesaro
summability, absolute harmonic summability and absolute Norlund
summability of Fourier series and series related with it. The
purpose of this paper is to furnish a general theorem on the
absolute Norlund summability of a Fourier series from which we
deduce several known and unknown results. :

We establish the following theorem:

THEOREM. Let a satisfy 0 < a <1 and let {p,}e #Z and {¢,} ¢
bv be such that

(i) 2l4e] = O(le,]) and

.s e e

(i1) { Zk!—:zlﬂ}eB'
If ¢t)e BV(0, @), then 3, A, (x)e,€|N, p.,|.

4. We use the results in the following lemmas towards the
proof of our theorem.

LeMMA 1 (McFadden [13]). If {p,} s @ nonnegative nonincreasing
sequence then for 0 <t < m and for any m, @ and b
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b

Hn—k
S0 S KPPy .
a

LEMMA 2. Let {p,} be a nonnegative nonincreasing sequence
and {&,}€bv be such that S| 4de.| = O(e,]). Then for l/n <t =<
r, T = [1/t] and m = [(1/2)n],

(i) G(n, &) = O(Felea=al) 1 o( 2o ) ;

(i) £ G(n, 1) = O(nH(n, 1)) ;
and

(iii) L(n, t) = O(nt*H(n, t)) .

Proof. (i) Let

n n—1

PG(n, ) = (3 + 5 )piesseo

0

=8 +8S;.

Then by Lemma 1

8. = 0(Pjernl + 3145, ,1})
= O(P-|e, ),

and

¢
= (TN pues + 3 64 Bois = Do) + 3L Pacssl 4]

by hypotheses.
(ii) Let

d _ (< o - s Li(n—k)t
P2 G(n, t) = (3 + 5 )piessln — kyie
= S3 + S4 .
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Then, proceeding as above in (i)
S, = OPH(n — m) eua] + 3] 40 — Bes )1}
= OP{nlennl + S bl des] + 3, 00}

— O(Pt){nls,,_m] +n_§m ]skl} ;

n—m-—1

S, = 21‘. keyp,_iie™
= 0t = m = Doy i lpuss + 3 | dkepo )}
= 0fnps +" 3 k1 420 )| + 3 Pl el

= O(n/t) {p,,, +7L$ﬂ‘,—2 | d(exDu-1) I}
= O(np,/t) .
(iii) We have

t+1/n

Il — a)J(n, t) = (S + S;l/n)(u - t)“"—(%g(n, wydu

=1+ I, say.
t+
t

I, = O(H(n, t)) S T = t)du, by (i),
= O(n“H(n, t)) ,

and
L, = 0 lg(n, Wliyaly ¢ + - < 7' <7,
- o P i
- O< P,” >{Pr|$n—m] + t }’ by (1) .
Therefore

(e + | L(n, t)] = [[u*J(n, W] — ag:%““J(n, w)du |

— | a a e (T e @
= tJ(n,t)+mStu Su(w ) dwg(n,w)dwdul

__x S”i
I'l— a) Jedw

I PP a ”_d_ a=1f1 _ a\—@ I
= |t 0+ s Stdwg(n, w)dwg/wu (1 — w)“dul

= Kit*|J(n, 9)| + K lg(m, t), e = t' <m.

= {t*J(n, t) + g(n, w)dw Sj(w — u)‘“u"‘“‘du,

1
t
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= L(n, t) = O(n*t*H(n, t)).

LEMMA 3 (Das [6]). Let {p,}e.# Then >, u,€|N, p,l, if and
only if

1

nP, < e

>

zl:. pn-—kkuk

5. Proof of the Theorem. Let

1

T, =Ty@) =3

le Dok Ay(x)er -
Then by Lemma 3, it is sufficient to show that
Z_&L < oo,
n
As

kA @) = .Z_ S}(t%{% sin ktdt ,

Zr, - Il’,, z _— Sogs(t)g? sin ktdt
T ad
= t)—g(n, t)dt
| #6-La(n, 1
=t Ly, 1) | ¢ — wdowdt, 0 < a <1,
I'l—a) Jodt 0
1

—_ § B — - d
ol iy god@(u) Su(t u) g(n, t)dt

= — S:@a(u)%J(n, wdu, 0 S a <1,

di

= —[s () Vr, D) + | Vi, wdp, )
= 4V, ) + | Vin, udg,(w) .

If in particular we choose 4(t) = 1, then ¢,(t) =1 and T, = 0 for
every n. Hence

Vin, )y =0.
Thus

Zr, - S:V(n, w)dgo(u) .
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As ¢.(t)e BV(0, @), to complete the poof it is sufficient to show that
uniformly in {, 0 <t =7«

s V9l _ g
n

Since V(n, t) + L(n, t) = 0, we have
s Vo 0] o &V )] 3 1L )]

n T n 1 n
As
lo(n, )] < 25 pelens| S K,
n 0
and
l dtg(% t)[ = zpk(n ~ k) e,r| = Kn
we have
. t+1/n T _ —-a__d___
Il — a)J(n, t) = (S + Lw), (= )L g(n, udu
= ete.
= 0(n") .

Hence, for 0 < a <1,
I+ a)|V(n, t)] = |[wI(n, 0} — S’u«-lJ(n, wydu| < Knot

and

1

s VOO < gresipe < &
n 1

For o = 0, we note that

LS olensl(n — Bt < ut,

Vin, ] = lotn, ] = 53

and thus again

sVt
1 n

Therefore, after Lemma 2(iii), it is sufficient to show that

=3 n* | H(n, t)| < K ,
T4+1
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uniformly in ¢, 0 < ¢ < 7. However
¢ 3, n | H(n, t)|
T+1

o a1 u ) na—z n+1 PR ket ’n“_l m
:Prtazy‘llp isn—mI+PTt z_;‘l P ,;mlSkl+t rE-H Pp

T+1 T

oo ok a—2 el
<K + Pt Y Je) 22—+ Kt S e

L(r¥1)/2] n=k—1 P,,, pans)

<K + KPS, L&l
- + & nr%/z] kP,

=K.

This completes the proof of the theorem.
6. COROLLARIES.
6.1. Taking p,=I'(n + B/ (B (n +1),1 =5 >0, we get

COROLLARY 1. Let « satisfy 0 < a <1, and let {&,} €bv be such
that

(i) >wl4de] = O(le,]) and
(ii) {nﬂ””iﬂL}eB.

” kH»ﬂ*a

If ¢.t) e BV(0, n), then X, A (2)e,€|C, B, B = a.

The case {e,} = {1}, and B > «, furnishes corresponding results
due to Bosanquet ([3], [4]). Taking 0 < a = 8 <1 and specializing
{e.} to {(log(n + 1))}, e > 0, we get a result due to Cheng ([5]).
Again in the case a = g3, taking {¢,}] to be a convex sequence (see
Zygmund [18], p. 93, for the definition and certain properties as
needed) we obtain a result due to Prasad and Bhatt ([14]). The case
B8 =a =0 1is covered in Corollary 3 below.

6.2. The case p, = 1/(n + 1) furnishes the following result on
absolute harmonic summability:

COROLLARY 2. Let « satisfy 0 < a <1, and let {¢,} € bv be such
that

(i) 27 1de] = 0(e,]) and

oy Jlogn & e
(ii) { ne gkl””loglc}eB'
If ¢.(t)e BV(0, &), then 3, A,(x)e, €| N, 1/n + 1].




378 G. D. DIKSHIT

The case a = 0, includes a well known theorem due to Varshney
(I17], Varshney has proved the result for {e,} = {1/log (n + 2)}).
Specialising {¢,} to be {log(n + 1)\,/n%}, where {\,} is a convex
sequence, we get the result due to Bhatt {1].

6.3. It is now known (see Dikshit [8]) that if {p,}e.# and
{P,} € B then the method |N, p,| is ineffective, in the sense that it
sums only absolutely convergent series. Thus the extra hypothesis
that {P,} € B in the theorem yields the following result on absolute
convergence factors for Fourier series.

COROLLARY 3. Let «a satisfy 0 < a <1, and let {¢,} € bv be such
that

(1) X%lde| = O(le,]) and

. A

(i) {3-=leB.
If ¢.(t) e BV(0, ), then >, A, (x)e, 18 absolutely convergent.

Results in somewhat weaker form are eventually known in as
much as they could be deduced from the theorem of Cheng [5],
Prased and Bhatt [14], or the Corollary 2, with an application of a
result of Kogbetliantz ([11]).

6.4. The case {e¢,} = {1} yields the following:
COROLLARY 4. Let 0 < a <1 and let {p,} € _# and be such that

P, 1 }
n M —~———+eB.
{ na %‘ kl-—aPk

If ¢.(t)e BV(0, 7), then 3, A,(x)€|N, p,|.

A more general result in this direction is also known and is
given elsewhere (Dikshit [7], [9]; see also Lal [12]).

6.5. Writing {¢,} = {P.\./n°} We obtain:

COROLLARY 5. Let « satisfy 0=a<1, and let {p,} € 7 and {\,}
be a sequence such that

o (Exfen,
(i) 3 [a(E2e)| = o(Belzel) ana

n*
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111 Pn < l >\’k I
(iii) {—7?1—; T}GB .
If ¢{t) € BV(0, ), then 3. A (2)P.\,/n" €[N, p,|.

It is worthwhile to compare the result of this Corollary for
a =0 with one due to T. Singh [16] and L. B. Singh [15] and for
0 < a <1, with those due to Nand Kishore [10] and Bhatt [2].

The author would like to thank the referee for the very valuable
suggestions.
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