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Let 4 be the open unit disc in C, d4 its boundary and
B c 04 a relatively open set. Let X be a complex Banach
space. Denote by Hy(4, X) the set of all continuous functions
from 4 U B to X which are analytic on 4. A set Pc X is
said to have the analytic extension property with respect to
Hg(4, X) if for each relatively closed set F'< B of Lebesgue
measure 0 and for each continuous function f: F'— P there
exists gc Hx(4d, X) with g| F=f and g(4 U B)C P.

THEOREM. Let P X be an open set. Then P has the
analytic extension property with respect to H;(4, X) for every
relatively open B c a4 if and only if P is connected.

By a result of E. A. Heard and J. H. Wells any closed disc in
C has the analytic extension property with respect to Hy(4, C) for
every relatively open BC d4 (see [9]). The special case B =04 is
the well known Rudin-Carleson theorem (see [4], [10], [12]). This
result was generalized to the vector case by proving that every
closed ball in X has the analytic extension property with respect to
Hy(4, X) for every relatively open BCdd (see [6]), the special case
B = 64 is the Rudin-Carleson theorem for vector-valued functions
(see [5], [11], [14]).

It is a natural question whether the balls above can be replaced
by some other sets:

Problem (see [8]). Obtain a (geometrical, topological) character-
ization of the sets having the analytic extension property with respect
to Hx(4, X) for every relatively open Bc 4.

It seems that this problem is not solved even for the subsets
of C.

Taking B = 04, F = {—1, 1} it is trivial to see that every set
having the analytic extension property with respect to Hy(4, X) for
every relatively open BC 04, is pathwise connected. The converse
is not true in general as shown by taking P= {t: 0 =<{<1}. However,
the converse turns out to be true for open sets and this is the main
result of the present paper.

Throughout, we denote by 4 the closure of 4. Given r >0 we
denote by B,(X) the open ball in X of radius 7, centered at the
origin. If K is a compact Hausdorff space we denote by C(K, X)
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the space of all continuous functions from K to X. By A(4, X) we
denote the Banach space of all continuous functions from 4 to X,
analytic on 4, with sup norm, and we write 4 = A(4, C). We write
I={t:0=<t<1} and we denote the set of all positive integers by
N.

For the proof of theorem we shall need four lemmas.

LemMmA 1. Suppose that G s a closed subset of 04 of Lebesgue
measure 0 and let U(G) 4 be a neighbourhood of G. Let p: I—X
be a path in a complex Banach space X and let € >0 be arbitrary.
There exists ¢ € A(4, X) having the following properties:

(1) ll¢(2) — p())]| <e (2eG)
(i) [l¢(z) — p(0)|| < e (zed — UG))
(iil) ¢(4) c p(I) + B(X).

Proof. By the Mergelyan theorem for analytic functions into
a Banach space (see [3]) there exists a polynomial f:C— X satisfying
| f(z) — p(z)]] <e (2eI). By the continuity of f there exists an
open neighbourhood V of I such that f(V)cp(I)+ B.(X). Let
W CV be an open set, bounded by a Jordan curve, containing the
point 1 in its boundary and satisfying I — {1}cW, Wc V. Let
TcW be a neighbourhood of the point 0 in W such that
1f(z) — p0)]|| <e (zeT). Assume for a moment that a € 4 satisfies
a(dc W, a(@) = {1} and a(d — U(G)) = T. Then it is easy to check
that ¢ = foa has all the required properties. It remains to prove
the existence of such an a. By the Riemann mapping theorem (see
[13]) there exists a homeomorphism B from 4 onto W, analytic on
4 and satisfying 8(0) =0, @) = 1. Let S< 4 be a neighbourhood
of 0 such that B(S)c T. By the Rudin-Carleson theorem (see [12])
there exists ve A satisfying v(4) <4, 7(G) = {1}. Also (see [15],
p. 205) there exists v € A satisfying ¥(4) C 4, +(G) = {1}, |¥(2) ]| <1
(ked—G). Let U,c U@ be an open subset of 4 containing G.
Now 4 — U, is a compact set disjoint from G and it follows that
for sufficiently large n e N we have ¥*(2)-7(2)eS (zed — U,). Now
putting a(z) = Bl¥"(2) - ¥(2)] (€ 4) it is easy to see that a has all
the required properties.

LEMMA 2. Let X be a complex Banach space and let @ be an
open connected subset of X. Given a compact subset K of Q and a
point x € K there exists 0, > 0 such that for every 6:0 <0 < d, there
exists a path p: I— X satisfying

(i) p(0)==

(ii) Kcp(I) + B(X)

(iii) p(I) + Beu(X)C Q.



ANALYTIC EXTENSIONS OF VECTOR-VALUED FUNCTIONS 391

Proof. By the compactness of K there exists an ¢ > 0 such
that K + B;(X)c Q. Cover K by a finite number of balls, say by
B, B, ---, B, of radii ¢ whose centers lie in K. With no loss of
generality assume that the center of B, is x. By the connectedness
of @ there exists a path ¢q: I — X, satisfying ¢(I) C @, ¢(0) = x, and
connecting the centers of all B,. By the compactness of ¢(I) there
exists d,: 0 < 9, < ¢ such that ¢(I) + By, (X)CQ. Let 0 satisfy 0 <0 <9,
and cover K by a finite number of balls D, D, --., D, of radii ¢
whose centers lie in K. Let 1 <47 <. Consider those balls D,
whose centers lie in B,. Connect all these centers by a path p,
starting and ending at the center of B, and satisfying »,(I) < B,.
Having done this for all 7, denote by ¢, (1 £ ¢ < n — 1) the part of
the path ¢ between the centers of B,, B,,,. Now define p as the sum
of the paths

p=g(pi+qi)+pn-

If sel is such that p(s) is in none of the balls B, (1 £ ¢ < #n) then
p(s)eq(I) and consequently p(s) + B(X) Cq(l) + By (X)<Q. If
s € Iis such that p(s) is in some B; then p(s) + By:(X) C B, + By, (X) C
K + B,{(X)= Q. On the other hand, if ¥ € K then ye D, for some
ball D, whose center is contained in p(I) which means that y e p(I) +

Bi(X).

LEMMA 3. Let FC o4 be a closed set of Lebesgue measure 0 and
let UF)C 4 be a neighbourhood of F. Suppose that Q is an open
connected set in a complex Banach space X containing the point 0.
Let ¢ >0 be arbitrary. Given f e C(F, X) satisfying f(F)CQ there
exists f e A(4, X) satisfying

(i) FIlF=f

i) fdce

(i) Nl/@)| <e (zed— UF)).

Proof. f(F)U {0} is a compact set contained in @. By Lemma 2
there exists 0: 0 < d < ¢/5 and a path p: I— X satisfying f(F)cp(I) +
B,(X), p(I) + By(X) < Q and p(0) = 0. Since F'is a compact set the
function f is uniformly continuous on F. By the assumption F is
nowhere dense on 4. It follows that

F=UF.

where F, C 04 are disjoint closed sets such that

Nf@) —fOIl<d (CeF;1=1=mn).
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Let U, (1 £ ¢ < n) be disjoint open subsets of 4 satisfying F,c U,
UF) 1 =i=<mn). Since f(F)Cp(I)+ By(X) there exist t,e¢I and
z;€F, (1 <7< n) such that

o) — fRIII<d A=izn).

Applying Lemma 1 to the paths ¢t p(tt) (1 <17 < n) there exist
functions ¢, ¢ A(4, X) (1 £ 1 £ »n) satisfying

l|¢:(2) — p(t) || <0 (z€F)
o) || < d/n (zed— U)
¢(d) c p(I) + By(X) .

Now define ¥ ¢ A(4, X) by

If zed4— 2, U, then
1@ = 3118 <n. dfn=0.
If z¢ U, for some ¢ then z¢ U; (¢ # J) and

V(@) = 62) + 3840 € p(D) + BiX) + B(X) o) + Bu(X) -

Fiall

Consequently Z(4) < p(I) + B,(X). Now define 6 ¢ G(F, X) by 0(z) =
U(z) — f(z) (ze F). If ze F then ze F; for some ¢ and consequently

16@) (| < 117@) — p(e) 1| + | p(6) = F@I| + 1| F&) — F@ |
< 318 | + 1l 6) — () | + 25 .

EEad

< 40 .

By the Rudin-Carleson theorem for vector valued functions there
exists O c A(4, X) satisfying ||6|| < 49, 6| F = 6. Finally, define
f@)=T(2) —6(2) (e d). Clearly fe A(4, X). Further, f(J)c »(I) +
B(X) + Buo(X)c o(I) + Bu(X)C Q. Clearly F|F=7f  Also, if
zed — U(F) thenzed — U, U, hence || f(2) || < [|¥ ()| + [|6() || <
0+ 40 < .

LEMMA 4. Let E be closed subset of 04 and let G cod — E be
a relatively closed set of Lebesgue measure 0. Let HC 04 — E be a
compact set of Lebesgue measure 0, disjoint from G. Let @ be an
open connected set in a complex Banach space X containing the
point 0 and suppose that fe C(H, X) satisfies f(H)CQ.

There exists d, > 0 such that for every 0:0<d <, and for
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every ¢:0< e <90 and for every meighbourhood Ucd—E of H
there exists a continuous function i d— E— X, analytic on 4 and
scztisfyi%g~

(i) JIH=7

(ii) f [NG =0 B

(i) [[f@)]|<e (zed — E)—E) - T)

(iv) f(4— E)+ B(X)cQ.

Proof. With no loss of generality we may assume that UNG= Q.
By Lemma 2 there exists d, > 0 such that for every 0:0 < d < 6,
there exists a path p: I — X satisfying p(0) = 0, f(H) < »(I) + By;(X),
p(I) + B(X)C Q. Let0<0<d, and 0 <e<d. Applying Lemma 3
to the function f and to the (open connected) set p(I) + B,(X) there
exists f, € A(4, X) satisfying

FlH=f
Ti(d) + By(X)cQ
If@)]l <e2 (zed - U).

Define

J‘ fi(s) (seG)

fos) = (scH) .

Then f, is continuous on G U H and satisfies || fy(s) || < 6/2 (seG U H).
By Theorem 2 in [6] there exists a continuous function f2 - E—X,
analytic on 4, satisfying fHlGUH=F and || f 2(z) | <¢/2 (zed— E).
Put f=/f, + f.. It is easy to check that f has all the required
properties.

Proof of theorem. Let @ be an open connected subset of a
complex Banach space X. Let EC 04 be a closed set and let F
04 — E be a relatively closed set of Lebesgue measure 0. Suppose
that f: F— X is a continuous function satlsfymg f(F) c Q. We will
prove that there exists a continuous extension f: 4 — E— X, j | F = f,
which is analytic on 4 and which satisfies f(4 — E) C Q.

If £ is empty then the statement of the theorem is proved by
Lemma 3. So assume that E is not empty. With no loss of gener-
ality assume that 0e Q. As in [6] write FF = 7., F, where F, C
4 — E are compact sets such that there exist disjoint open sets
U,c 4 — E satisfying F,c U, for all n.

Now we define inductively a sequence {D,} of open subsets of
4 — E satisfying F,c D, c U, for all n, a decreasing sequence {0,}
of positive numbers and a sequence {¢,} of functions from 4 — E to
X having the following properties:
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(i) for each 7e¢N, ¢, is continuous on 4 — E and analytic
on 4

(ii) ¢ |F;=0(i+#7J; 1,7€N)

(iii) ¢;|F, = f|F: (i€ N)

(iv) ¢4 —E)+ B,(X)CQ (teN)

(v) g2l < d,/2" (ze(d — E) — D ieN)

(vi) |31 9i() || < 0:1,/2 (2€ Dyyy5 i€ N).
If ¢ =1, put D, = U, and apply Lemma 4 to the function f | F, to
obtain 4, satisfying B,;(X)C @ and ¢, which satisfies (i)-(v) above
for i =1. Now assume that d,, D,, ¢, (1 < ¢ < n) are given satisfying
A-(v)for 1=i=<mnand (vi)1=<¢=<n—1. Applying Lemma 4 to
the function f | F,,, there exists 9,,,: 0 < d,., < 0, such that Lemma
4 holds for 0 = 0,,,. Since the function

2 '——’é $i(2)

is continuous on 4 — E and equal 0 on F,., there exists a neigh-
bourhood D,.,c 4 — E of F,., satisfying D,., < U,., and such that
(vi) is satisfied for ¢ =n. Now, by Lemma 4 there exists ¢,.,
satisfying (i)-(v) for 1 =n + 1.

Define

F@) = 36ds) (zed—E).

If ze(d— E) — U7 D; then || ¢(2) || < 6,/2°" < §,/2'*'. Consequently
the series converges uniformly for all such z. By

S l8da) || < 8/2

and by B,(X)CQ we have f(z)c@ for all such 2. Suppose that
ze D, for some k. Then z¢ D; for j + k and by the above argument
the series converges uniformly on D,. Further, by (v) and (vi) we
have

’[i $i(2) H =

=1
J#k

S0 |+ S le@I <o+ o=,

Consequently by (iv) f(2) € ¢(d — E) + B, (X) Q. Since each com-
pact subset of 4 — E misses all but a finite number of the sets D,
the series converges uniformly on compact subsets of 4 — E. Conse-
quently f is continuous on 4 — E, analytic on 4 and, as shown above,
satisfies f(4 — E) = Q. By the properties of ¢, we have also f|F = f.

COROLLARY (see [7]). Given any open connected subset Q of a
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separable complex Banach space X there exists an analytic function
i 4— X whose range is contained and dense in Q.

Proof. Put K = {1} and let F = {2,}] C04 — {1} be an injective
sequence converging to 1. Let f(z,) = w, where {w,)JCQ is a
sequence dense in @ and then apply theorem.
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