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Let K/F be a finite normal extension of algebraic number
fields and let Cκ be the ideal class group of K. There are
two fundamentally different ways to define the principal
genus of Cκ with respect to F. Classically the principal
genus is described by norm residue symbols. By the modern
definition it is the class group of the maximal unramified
extension of K which is the composite of K with an abelian
extension of F. It is shown here that the two definitions are
equivalent.

Let F be a finite algebraic number field and K a finite normal
extension of F with G = Gal (K/F). Let K be the Hubert class field
of K and let Cκ be the ideal class group of K. By class field theory
the fields lying between K and K are in one-one correspondence with
the subgroups of Cκ. (See [3] or [4] for the class field theory
involved.) Let L be the genus field for K/F. As defined by Frδhlich
([1]), L is the composite of K with the maximal abelian extension
of F in K. Galling this maximal abelian extension E, we have
f 2 L = KE 2 if, £7 2 ί7 and K Π E is the maximal abelian extension
of F in K. The subgroup of Cκ corresponding to L is the principal
genus of Gκ. Gauss's definition of the principal genus is based on
arithmetic characters. In [2] we showed that when G is abelian
the two definitions are equivalent. Here we will show that in fact
they are equivalent for any G.

Let CF be the ideal class group of F and let Nκ/F: Cκ —> CF be
the norm map on ideal class groups. Let F be the Hubert class
field of F and NCK the kernel of the norm map. Then the subgroup

NCK of Cκ corresponds to the extension KF of K. Clearly L 2 KF
and, letting H denote the principal genus of Cκ, we see that NCK 2 H.

We now proceed to describe the characters in Gauss's definition.
Let P19 , Pt be the primes of K, finite or infinite, ramified in K/F.
For each i choose a prime Pt in K such that Pt Π K = Pt. This
allows a consistent choice of primes in each subfield k by PkΛ =
Pi n k. And we will denote the completed localization of k at Pkti

by lct. In particular we have the chain JK̂  2 £* 2 Ku Et 2 Ft of
local fields. For an ideal 2t of a field k let [SI] denote the ideal
class of St. Now let Si be an ideal of K such that [Si] e NCK. Thus
NR/F(%) is a principal ideal of F, say Nκ/F($ί) = (α), aeF. For each
i we have a norm residue symbol ((Kt/Ft)/a) which we will also
write {{a, K/F)/Pi) or most simply X*(a). This symbol is an element
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of the local group Gal (Kt/Ft) modulo its commutator. We may
identify Gal (KJFi) with the decomposition group Zt of Pi in K/F.
Thus we have a homomorphism Xt\Fx^ ZJ[Zi9 Z%\ = Zf. Let X: Fx -»
Π<=i Zf by X(a) = (Z^α), , Xt(a)). Let J7̂  denote the units of Ff PF

the principal ideals of F, and S = X( UF). Then X induces a homo-
morphism which we'll also denote by X: PF = Fx[UF-*1JU1Z

<ίb/S.
Let (α)eP F and (α) - {NK/FQ>)) = Nκ/F((b)). Then α = ε Nκ/F(b) for
some εe UF and %*(&) = Xi(ε)Xi(Nκ/F(b)) = %ί(ε) for £ = 1, , ί since
Xi(Nκ/F{b)) = ((KJFt)/Nκ/F{b)) and every global norm is a local norm
everywhere. It follows that Z: PF—*]JZih/S vanishes on NK/F(PK)QPF.
Note that JV*/jP: NCK-+PF/N(PK) since if [2t] = [35] e ^ then SI = (α)»
and JV(3l) - iSΓ((α))iV(SB) e P p . Now we can define / = X o iSΓ^ :̂ ^C^ -*
PFIN(Pκ)-+ΊlZ?b/S. The formal statement of the equivalence of
the two definitions of principal genus is given by

THEOREM. Let KJF be a finite normal extension of number
fields and let H be the principal genus in the sense of Frohlich.
Let f'.NCκ—+ϊ[ti=:1Zib/S be the modified product of local norm- residue
symbols described above. Then H — Ker (/).

Proof. First we show that Ker (/) Q H. Let P be a prime ideal
of K, P Φ Pu i = 1, , t; [P] e Ker (/), and P of absolute degree 1.
Since [P] e Ker (/) and P is of degree 1, NK/F(P) = p = (p) where
p = P Π F and peF. Moreover p may be chosen so that Xt(p) = 1,
i = 1, -t, since |0 times any unit of F generates p and [P] e Ker (/)
implies X(p) = X(ε) for some ε e UF.

Let Mi be the maximal abelian extension of Ft in £*. So Kt Π Mi
is the maximal abelian extension of Ft in Kt. Then

The second equality here follows from the fact that NKi/Fi(Ki)
) Therefore

e Gal (MJM, n ^ ) S Gal

Since P Φ Piy any ί, p is a P runit for each i. Thus ((MJFJ/p) e
Q Gal (ilf,/!^) where Γ is the inertia group of the local

extension. So we have

T(MJFt) Π Gal (MJM, Π ̂ ) = Γ(Jlf/Λ n

LEMMA. Li\Fi be α normal extension of local fields and Mi the
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maximal abelian extension of Ft in Li9 If Li^Ki'ΏFi and LJKi
is unramified, then Mi/Mi Π Kt is unramified.

The lemma, to be proved below, implies that T(MJMi Π Kt) = {1}
and therefore ((MJFt)/p) = l. Since M^E, it follows that ((EJF^/p)^
1 = ((p9 E/FyPt) for all i. So we have E/F abelian, peF, and
({p, E/F)/pt) = 1 for p, = F f] Pif i = 1, . , t. Since K^E, the {fc}
includes all primes of F ramified in E/F. For every unramified
prime of F at which p is a unit the norm residue symbol is 1. The
only undetermined symbol is ((p, E/F)/p). By the product formula
for norm residue symbols, the product of all symbols is 1. Hence
we must have ((p, E/F)/p) = 1. Recall that (p) = p, i.e. p is a prime
element at p, and p is unramified in E/F. Hence ((p, E/F)/p) generates
the decomposition group of p in E/F. We conclude that p is com-
pletely decomposed in E/F. It follows by standard arguments that
P is completely decomposed in L/K since L = KE. The subgroup
of Gκ corresponding to a subfield k of K can be characterized as the
classes of all prime ideals of K which are completely decomposed in
k/K. Thus [P] e H since H corresponds to L.

Now we show that Ker (/) Ξ2 H. Let P be a prime of K of
absolute degree 1 with [P] e H. Let NK/F(P) = p = (<o), p e F and as
above let Pιf i — 1, , t be the primes of K ramified in K/F. We
may assume also P Φ Pi for any i. Since [P] eH, P is completely
decomposed in L/K. Say, P = Q1 Qp so that NL/F(Qλ) = (p). Let
m be a divisor of F divisible by high powers of all Pt and prime
to P. Since E is the maximal abelian extension of F in L and in
K the norm limitation theorem implies that

( * ) NE/F{Im{E)) - Sm(F) - NL/F(UL)) Sm(F) - N^/F(Im(K)) Sm(F)

where Jm(&) is the group of ideals of k relatively prime to m and
Sm(A) is the ideal ray (Strahl) mod m.

We have noted that (p) = NL/F(Q) with Q, e 7m(L). It follows
from (*) that we can write (p) = iV /̂F(g[) (α) where 2telm(#) and
(α) G Sm(F). The norm from J^ to iΓ of any ideal of ^ is a principal
ideal of K. Let iNfe/jff(2ί) - (a), a e K. So (p) - (α)iV^(a) -
(aWK/K(NE/K(%)) = (a)(NK/F(a)) or ε<0 = a Nκ/F(a) for some unit εe £/>.
Therefore

ep,K/F\ = (a,K/F\ (Nκ/F(a), K/F\
Pt / \ Pt J\ Pi / '

Since a global norm is certainly a local norm ((Nκ/F(a), K/F)/P%) = 1.
Also since α e Ff a = l(m) and m is divisible by high powers of the
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Pi we see that ((Mt Π KJFJ/a) =• 1. And therefore

_ (a,K/F\ _ -

Thus ((εp, K/F)/Pt) = 1 for all i. In other words X(p) = Z(6"1), which
gives [P] e Ker (/).

Proof of the lemma. Let T(L/F) be the inertia subgroup of
Gal (L/F). The quotient Gal (L/F)/T(L/F) is a cyclic group, hence
T(L/F) contains the commutator subgroup of Gal (L/F), which is
Gal (L/M). Thus L/M is totally ramified. Letting e denote the
ramification index, we have e(L/K f) M) ^ [L: M] ^ [K: K Π M\. This
last inequality follows from the fact that L 2 KM and, since M/K Π M
is galois, [JOf: M] = [K:KnM]. Since L / ί is unramified, e(L/KΓ\M)^
[K: K n M]. Therefore e(L/K n AT)' = [ίΓ: # Γ) M] = [L: M] = e(L/M)
and so β(JH/ίΓnΛf) - 1.
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