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We give two proofs that H*SL (8, 3), F;)=0. This result
has appeared in a paper by Sah, [6], but our methods are
relatively elementary, i.e., we require only elementary homo-
logical algebra and do a group-theoretic analysis of an
extension of SL (3, 3) by F'; to show that the extension splits.
The starting point is to notice that the vector space is a
free module for F;(<x>), where x has Jordan canonical form

11
(8 (]5 %) We then can exploit the vanishing of H!({x), F}) i=
1,2,

For elementary linear algebra, we refer to [2] and for cohomology
of groups, we refer to [1], [4], [5] or [6]. Group theoretic notation
is standard and follows [3]. Let V be a 3-dimensional F,-vector
space and let SL(3, 3) be the associated special linear group. Let
v, ¥, ¥; be a basis for V. Define, for 4,7¢{l, 2,8}, 7 % 7, and te F,,
x,.(t) e SI(3, 3) by

v, k#*1

x,{(t): v, —— .
A0 v, v, +tv, k=1.

Inspection of the Jordan canonical form shows that all x,;(¢), ¢ = 0,
are conjugate in GL(3, 3) = {1} x SL(3, 3), hence in SL(3, 3).
Set G = SL(3, 3). We let

T

(*) 1—V—G* G—1

be an arbitrary extension of G by V with the above action. We
will show (*) is split. We use the convention that u*eG* is a
representative (arbitrary, unless otherwise specified) for ueG.

The alternate proof of splitting (given later) is much neater
than the first version. The methods are quite different, however,
and it seems worthwhile to give two proofs.

LEMMA 1. Let x = x(D)as(1)x(—1). Then Cyzx) = {x, x,(1)). If
te @G is an imvolution which imverts x, then t centralizes x,(1).

Proof. The first statement is elementary linear algebra. Namely,
2 has a eyclic vector in V, so that any transformation which commutes
with z is a polynomial in z. Since x has minimal polynomial of
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degree 3, its full commuting algebra is all matrices of the shape

b ¢
a bl, a,bcch;.
0 ¢

S O 8

The first statement is now clear. As for the second, it suffices to
display an element ¢ with the required properties, e.g.

-1 -1 0
t= 0 1 0
0 0 -1

The lemma is proven.

LEMMA 2. 2,(1)xs()xs(—1) and all its conjugates are represented
i G* by elements of order 3. Any two such representatives are
conjugate by an element of V.

Proof. The Jordan canonical form for x = x,(1)x,;(1)x;(—1)
indicates that V is a free Fy{z)-module. So H'({x),V)= 0for = 1.
Both statements follow.

LeMMA 3. FEach x,:{(t) is represented im G* by an element of
order 3, which commutes with an involution of G*.

Proof. We may assume ¢ =1,7=3,{=1. Let
r = xlz(l)xzs(l)xm(—l) ’

and let z* ¢ G* represent z, |2*|=38. Again by Lemma 2, a Frattini—
like argument shows that Ny({x))* =V Ng({x*>). Choose y € Nz({x*>)
with y* = 2,4(1). Then Cu(z*) = {x*, ¥, v;) is abelian. Let ¢t € Ng({x*))
be an involution inverting x*. Then by Lemma 1, ¢* centralizes (1)
and inverts »,. By Fittings theorem.

Cola*) = (Y X <&, v
where {(y,> = C,({x*, t>). Clearly |y,| =3 and 1= yfe{(xy(1)). This

proves the lemma.

LEMMA 4. If t is an involution of G*, Ca(t) has a Sylow 3-
subgroup isomorphic to Z, X Z,.

Proof. Since G has one class of involutions, so does G*. So,
we apply Lemma 3 to see that ¢ centralizes an element of order 3
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outside V. Since |[Cy(t)| = 3 and C,(¢t") = GL(2, 3), we are done by
the Frattini argument namely, {¢) € Syl, (V<¢)) and V{t) <] H, where
H is the preimage in G* of Cy(t").

In what follows, let B = N ({v;») and @ = 0,(R). Then

a
R ={lA b||AeGL(2, 3), a, be F,, ¢ = (det A)™*
0 0 ¢
1 0 a
Q=40 1 bdlla,beF,
0 0 1
Let
—1 0 0
h = 0 -1 0
0 0 1

and let—denote images under B — R/{(v;»>. Let h* € R be an involution
representing h.

LEMMA 5. @ is inwerted by h*. Also, Q is elementary abelian
and Q s extra special of order 3° exponent 3, with center {v,).

Proof. The first statement is clear since h inverts @ and (v, v,).
Therefore, Q is abelian. From Lemma 3, we get that Q is elementary
and the action of members of @ on V implies that @ is extra special.
Since @ is generated by elements of order 3, by Lemma 3 again,
Q@ has exponent 3.

We now require a technical result for studying automorphisms
of Q. Since automorphisms commute with commutation, we have a
homorphism (which is actually onto) Aut (Q)— Sp, (4, 3), the group of
similitudes of a nondegenerate alternating bilinear form from F! to
F, (a similitude preserves the form up to a scalar multiple; we have
ISp, (4, 3): Sp (4, 3) = | Fy*| = 2, where Sp (4, 3) is the symplectic group,
i.e. the group preserving the form).

LEMMA 6. Let M be a 4-dimensional Fj;vector space supporting
a nondegenerate alternating form (,) and let Spy4, 3), Sp(4, 3) be
the associated group of similitudes, resp. symplectic group. Let I
be a maximal totally isotropic subspace and let K be its (global)
stabilizer in Spy(4, 3). Then

(i) dmI=2

(ii) If J is a maximal totally isotropic subspace complementing
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I in M we may choose a basis a,, b, for I, a,, b, for J so that (a;, b;) = 0;;
and (a;, a;) = (b;, b;) = 0. With respect to the basis {a, a, b, b} for
V, elements of K have the shape

o oar)
0 ctAY)’

AeGL(2, 3), B a symmetric 2 X 2 matrix, cc F;¢ =1 if and only

if the matrix lies in Sp(4, 3). In this notation, 0(K) comsists of

those matrices with A = (% (1)) and if L is the set of matrices with

B =0, L complements 0(K) in K.

(iii) If YeSyly(L), 0(K) is a free F,Y — module.

(iv) Any subgroup of K meeting 0(K) trivially stabilizes a
maximal totally isotropic subspace which complements I, and is in
Jact conjugate to a subgroup of L.

Proof. Statements (i) and (ii) are straightforward. To prove
(iii), we may assume Y = {y),

1 1 0 0

o1 o000

1o o 1 0

0 0 -1 1

Take
1 0 aa B
0145 7
Y) = ,

k(a,ﬁ’,)OOlO
0 0 0 1

a typical element of 0(K). A matrix calculation show that y k(e
B,V ="ka—28+78—"77. To show 0(K) is a free Y-module,
it suffices, since 0y(K) = Z, X Z, X Z;, to find a triple (a, B, ¥) such
that the three elements y ‘k(a, B, V)¥’, i =0, 1, 2 are linearly inde-
pendent. Any («, B, ¥) with 8 = 0 does the trick.

We now prove statement (iv). First (iii) implies that HYY,
0,K))=0for ¢=1. Secondly, if X < K, XN04(K) =1, then a Sylow
3-subgroup X, of X is conjugate to a subgroup of Y, and so H*(X;,
0(K))=0 for +=1. Finally, we quote the injectiveness of the
restriction H*(X, 0(K)) — HX,, 0(K)). A consequence is that X is
conjugate in 0,(K)X to L N 0(K)X, whence X stabilizes a maximal
totally isotropic subspace complementing I.
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THEOREM. The extension (*) is split. Consequently, H¥SL(3, 3),
F3) = 0.

Proof. Let S = GL(2, 3) complement {v;) in C,(h*) (use Lemma
4 and Gaschiitz’ theorem). Easily, we see that S is faithful on @
and the map Aut (Q)— Sp, (4, 3) embeds S as a sugroup S, of K,
where, in the notation of Lemma 6, M =Q, I =V. Also, 04S) =1
implies 0,(K)N S, = 1. Hence, by Lemma 6 (iv), S, stabilizes a
complement J to V in Q, where J is totally singular. Letting J be
the preimage of J in @, J is elementary abelian. Since h* inverts
J and centralizes v,, we J = (v,> X [J, h*]. Then [J, *]S complements
V in R. Since (|G: R™|, 3) = 1, Gaschiitz theorem implies that G*
splits over V, as required.

An alternate proof was suggested by V. Landazuri in a con-
versation. We sketch the argument. Using Lemmas 2 and 3, we get

(i) every element of order 3 in G is represented in G* by an
element of order 3.

Let y € G* represent x,;(1), |¥| = 3. Since [V, ¥, y] = 1, a simple
calculation shows

(ii) every element of the coset Vz,;(1)* = Vy has order 3.

Now take a,be U*, a® = x,(1), b™ = x,(—1)x,5(1), |b| = 8 (using
(i)). By (ii), |a| = |ab] = |ba] = 3. An elementary argument shows
that, if &, & are elements in any group such that |&| = |&) =
|&&,| = 3, then (&&7, &'&,) is a normal abelian subgroup of index 3
in (¢, &). Applying this to & = ab, &, = ba we see that {(a, b) has
a normal abelian subgroup H = {[a¢7}, b7'], [@, b]) of index 3. By (ii),
H is elementary abelian. Therefore, [{a, b)| = 3°. It is easily seen
that (&%, b*) = U, and this means {a, b> NV = 1. Our theorem now
follows from Gaschiitz’ theorem.
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