Pacific Journal of

Mathematics

MATRIX TRANSFORMATIONS AND ABSOLUTE
SUMMABILITY

TTTTTT ALAN KEAGY




PACIFIC JOURNAL OF MATHEMATICS
Vol. 63, No. 2, 1976

MATRIX TRANSFORMATIONS AND ABSOLUTE
SUMMABILITY

THOMAS A. KEAGY

The main results of this paper are two theorems which
give necessary conditions for a matrix to map into < the
set of all subsequences (rearrangements) of a null sequence
not in /. These results provide affirmative answers to the
following questions proposed by J. A. Fridy. Is a null
sequence = necessarily in 7 if there exists a sum-preserving
< — < matrix A that maps all subsequences (rearrangements)
of z into /7

1. Introduction. Let s, m, ¢, ¢, and c¢s denote, respectively,
the set of all complex sequences, the set of all bounded sequences
in s, the set of all convergent sequences in s, the set of all null
sequences in ¢, and the set of all sequences in s with sequence of
partial sums in ¢. Let

s={xes:T|w,| < o}and A ={res: |z, < }.

A matrix A which maps each element of ~ into ~ is called an
¢ — ¢« matrix and may be characterized [3] and [6] by the property:
(S| @pg Jomr em. If, in addition, 35 3o, @py = Suey %4, Whenever
x e then A is a sum-preserving < — <~ matrix; this is characterized
by > a,, = 1, for each gq.

In 1943, R. C. Buck [1] showed that a sequence x is convergent
if some regular matrix sums every subsequence of z. J. A. Fridy
[5] has obtained an analog to Buck’s theorem in which “subsequence”
is replaced by “rearrangement.” In addition, he has characterized
< by showing that x e~/ if there is a sum-preserving / — / matrix
that transforms every rearrangement of x into ~ In §2 of the
present paper, necessary conditions are obtained for a matrix to
map into ~ the set of all subsequences of a null sequence not in
/. This result yields as a corollary the affirmative answer to the
following question proposed by J. A. Fridy [5]. Is a null sequence
2 necessarily in -~ if there exists a sum-preserving /— / matrix
that maps all subsequences of x into #? In §3, necessary conditions
are obtained for a matrix to map into < all rearrangements of a
null sequence not in ~ This yields as a corollary Fridy’s character-
ization of ~ mentioned above. Finally, §4 contains examples of
matrix mappings involving both subsequences and rearrangements.

2. Subsequences. The following two lemmas will be instru-
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mental in the proof of Theorem 1.

LEMMA 1. Suppose ® and a are sequences such that 3.7, @Y,
converges for every subsequence Yy of x. If ¢ >0, then there exist
M >0 and a strictly increasing function 6: It — I" such that if
t > M, then |27 ay,| = ¢ for every subsequence (Yo)i=: of (Xo)i-sc-

LEMMA 2. If x is a null sequence not in < and a is @ nonnull
convergent sequence, then there exists a subsequence y of x such that
lim, | Do, 9| = oo and (Slp-: a¥o)n: s not bounded.

THEOREM 1. Let x be a null sequence mot in 7/, and suppose
A is a matrix such that Ay e s for every subsequence y of x. Then

(1) Z;o=1|apq| < oo fO’I‘ q= 1, 27 3’ <ee; and

(ii) of lim, >5 apy = L, then L = 0.

Proof. To show (i), let & be fixed and j > 47>k such that
x; + x;. Let y be the subsequence of x such that y, =z, for ¢ =
1,2 v, k—1; y,=2; and ¥,y = ;. for t=1,2,8, -... Let z be
the subsequence of x such that z, = z; and 2z, = y, otherwise. Then

oo>§ g:%apq?/q—éamzq :!xi_lepgiia/pk[,
Therefore X7 |aye| < oo.

Suppose lim, >'5, a,, =L and L+0. Let (y, -+, y4_,) be a subse-
quence of x with v,_, = =,. Since z ¢ there exists a subsequence
(w)y of (%¢),s, such that lim,| 3\t , w,| = . By Lemma 2 there
exists a subsequence (z,);- of (w.)i=» such that lim,| ! ,z,| =
and lim sup, | 3oy 2¢ D1 @pe| = . Choose & > M such that

k ) M1 oo
DL B 2 Qg | > M A X [ Yg| 2l ape| + 3.
q=M =1 gq=1 =1

Let K > 0 such that | > 5.xia, ] <1/(k(|2,] + 1)) for ¢q=M, ---, k.
By Lemma 1, letting ¢ = 1/K, there exist N, and d, for 1< »p £ K,
such that if N = max{N/, ---, Ng, &k + 2} and (7) = max {3,(¢): p =
1, -«+, K}, then 3K |3\ va,v,] <1 for every subsequence (v,)i-y
of (x)s=sw. Let y, =2, for M < q =k, and choose (Yu+s, -+, Yn-1)
a subsequence of (w,);;w such that D050 [y, | o= | @y | < 1. Note
that the first N — 1 terms of a fixed sequence y have now been
determined. If y* is any subsequence of 2 that agrees with y for
these first N — 1 terms, then >5, | >, a,u% | > M.

This process for defining terms of y may be continued so that
if T > 0, then there exist M = T and K > 0 such that
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o

Z%a%' >M.

=1

s

p=1

Thus a subsequence y of x can be constructed suchjjthat Aye¢ a
contradiction.

COROLLARY 1. A null sequence x is in 2 tf and only if there
exists @ sum-preserving 7 — < matric A such that Ayes for every
subsequence Y of .

3. Rearrangements. Following J. A. Fridy [5], the sequence
y is called a rearrangement of the sequence x provided that there
is a 1 — 1 function # from the positive integers onto themselves
such that for each k, x, = ¥.4. The word “permutation” will be
reserved to indicate the reordering of a finite sequence.

THEOREM. If « is o null sequence not im - and A is a
matriz such that Ayes for every rearrangement y of x, then
limq Zl::l Ia’pql = 0.

Proof. Let x, #+ x; be nonzero elements of x. Suppose the kth
column of A is not in ~. Let g %= k& and ¥ be a rearrangement of
x with ¥, = »; and 9y, = ;. Let z be the rearrangement of x such
that z, = x;, 2, = «;, and z, = y, otherwise. Then

o

]mi ”‘%’lZ]%k - a’pq] = Z Za’pqu'— Za'pqzq < oo
p=1 p=1 | ¢=1 g=1
Therefore 335%: | 6pp — @, | < oo for every ¢ = k. Since >3] a,,| = oo,
it now follows that >>..|a,, | = « for ¢ = 1. Suppose N >0 and a
permutation (r, +--, ry) of M terms of x has been chosen such that
S o= 00 If M= 30 [ 3L a7y | < oo, then

M oo
e >x+(§]¢a!§lla’px—a’pqlg

M
2.7
g=1

Slayl,

a contradiction. Therefore N = « and there exists K > N such

that 30y [ 2055 @ | > 2. Let 9 = min {g: z,€2\(r,, - -+, 7u)}. J. A.

Fridy [5] has shown that each row of A is null. Therefore there

exists T > M + 1 such that |z, | 35, |a,r| <2°%, Let r, = 2, and

(a4 ** ¢, r—) be a subsequence of #\(r, -::, 7y, ;) such that
=t Dugeast | Gpg | | 7g| < 27 and 3V, 7, % 0. Then

-1

> @peTq |

T r
D UyeTy
9= H+1

g=1

3

p=N

K
= 3,
p=N

M
Z a’pqqu
g=1

K
-2
p=N

IR
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But this process may be continued. Therefore there exists a rear-
rangement r of x such that if I, > 0, then there exist K > N= L
such that 35, |32 a7, | > 1, a contradiction. Hence each column
of A is in

Now suppose there exists ¢ > 0 such that if N > 0, then there
exists ¢ > N such that >3, |a,| > ¢ Let ze~ be a subsequence
of x that includes all zero terms of . Let j, = min{q: 2, # 0}. Let
N, > 0 such that 335, | a,x,| > 6. Letry =x;. Alsolet (r, «--, ry,y)
be a subsequence of z such that 33,207 | 7| S, [ ape | < 1/2 and 2z, = 7,
only if for each s < ¢ such that z, = 0 there exists b < a such that
2, = 7. Let M, > 0 such that

My o

S0 > 5 and (7l 5 o] <3
Let j, = min {g: x, € x\(ry, -+, 74,), and z, % 0}. Since each row of A
is null, there exists N, > N, + 1 such that 37 , .. |a,y,| > ¢/2 and
la5, ] 255 | @pmy | < 1/8. Let 7y, = w;,. Also let (ry,4y *++, Ty,-1) be a
subsequence of z\(r, -+, 7y, 7y,) suchthat 37231, | 70| X, | @0 | <1/16
and z, = r, only if for each s < t such that 2z, = 0 there exists b < a
such that 2z, =7,. Let M,> M, such that 372, .. |a,y,| > ¢2 and
| 7w, | D argr | Gy | < 1/32 This selection process may be continued
so that if % is fixed, then

My, oo My
pZ qZ WpeTq | = Z lamvlrzvll + oo e MZ la'pzvk"'zvko
=1 | ¢g=1 =M+
Ni~1
(Zl’rqul%ql+ 3 Lo
No—1

+ ; l?‘quIaml +Imzl§llaml

q=

k
+ 3 Joral+ )2 S Sl -1,
But » has been selected so that lim, >\, |7y, |= . Therefore
Ar ¢ 4, a contradiction. Hence lim, 3>, |a, | = 0.

The proof of Theorem 2 is now complete, and Corollary 2, which
was first proved by J. A. Fridy [5], follows directly.

COROLLARY 2. The null sequence x is in 7 if and only if there
exists a sum-preserving 2 — < matriz A such that Aye s for every
rearrangement y of x.

4. Examples. By Theorem 2 a matrix A that maps all rear-
rangements of a sequence x €¢,\/ into ~ must be an /— ~ matrix.
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But Theorem 1 gives little insight into the question of whether
A must be r— ~ if it maps all subsequences of x into ~ The
following example shows that A need not be ~— ~/ in this case.
Let o, =1/n for n =128, --+; a, =49 for ¢ =1,8, 27,64, ---;
and @,, = 0 otherwise. If y is a subsequence of 2 and Ay =z,
then |z, < ¢ for ¢ =1,8 27, .-- and 2z, = 0 otherwise. Thus
z €/ but clearly xec\s and 4 is not v — ~

I. J. Maddox [7] showed that a matrix A is Schur if it maps
all subsequences of some divergent sequence x into ¢. This might
cause one to suspect that if A maps all subsequences (rearrange-
ments) of a sequence x € ¢,\/ into 4 then Az e~ for every zccs. The
following example shows that this is not true. (The author wishes
to thank the referee for his comments which aided in the simpli-
fication of this example.) Letz,=1/nforn=1,238,:--; a,=(—1)/q
for ¢ =1 and a,, = 0 otherwise. Since (a,);., and x are both in
7%, each subsequence (rearrangement) ¥ of x is also in % hence,
Ayes. But if z is defined by 2z, = (—1)/(log(g + 1)) for each gq,
then zces and (a,2,);-: € ¢s; thus, Az ¢~
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