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Let (R, m) be a local Cohen-Macaulay ring of dimension
d and multiplicity e(R) = e. A natural question to ask about
an m-primary ideal / is whether there is any relation between
the number of generators of I and the least power t of m
contained in I. (t will be called the nilpotency degree of
Rjl) It is quite straight forward to obtain a bound for
v(I), the number of generators in a minimal basis of I, in
terms of t and e. However, there are several interesting
applications. The first is the existence of a bound for the
number of generators of any Cohen-Macaulay ideal I, i.e.
any ideal 1 such that R/I is Cohen-Macaulay, in terms of
e(RII), e(R) and height I. The second application is a bound
in terms of d and e for the reduction exponent of ra

1* m-ρrimary ideals* In this section we will use only the
standard facts about the existence and properties of superficial ele-
ments. However, later we will need a result stronger than the usual
existence theorem for these elements so we take this opportunity to
recall the definition and prove this special form of the existence
theorem.

DEFINITION. Let (R, m) be a local ring. An element x in m is
superficial for m if there is an integer c > 0 such that

(mn: x) Π mc = m""1 for all n > c .

It is a standard fact that x is superficial for m if and only if
there is an integer c > 0 such that 0 Φ X e m/m2 — Gλ and

(0: xG) n Gn = 0

for n ^ c where Gn = m"/m"+\ and G = (?oθff 1 φ .

LEMMA 1.1. Let (R, m) be a local ring with R/m infinite. Let
I, Jlf , Js be distinct ideals of R which are also distinct from m.
Then there is an element x in R such that

(1) xί Ji , i = 1, •••, s
(2) x is a superficial element for m

and
(3) the image of x in a superficial element for m/I.

Proof. Let G = R/m 0 m/m2 0 and G = R/m 0 m/m2 + 10
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m2 + I/m3 + 1 0 . Then G = G/K where K is a homogeneous
ideal of G. Let Ass G = {P19 PJ, AssG = {ζh/iΓ, , QJK), where
the Qi are primes in G. Suppose that Pt = m/M2 Θ m2/^3 0 * a n ( i
Qz = Pί/^. The following subspaces are all proper iϋ/m-subspaces of
mlm2:

Jt + m2/m2

9 i = 1, , n; P, Π (m/m2) , i = 1, , ί - 1

Q< Π (m/m2), i = 1, - , ί - 1; I + m2/m2 .

Since ϋ!/m is infinite there is a nonzero x in m/w* such that x
is not in any of these subspaces. We claim that if x is any element
of m which maps to x, then x is superficial for m and the image
of x in jβ// is superficial for m/L We need (0: Gx) Π m?lmn+ι = 0
and (0: G(x + ///)) Π mw + //mn + 1 + I = 0 for large w. Let 0 = N.D
• Γι JV^i Π -W* with Ni Pi-primary be a primary decomposition of 0
in G. Then (0: Gx) £ N, ΓΊ Π iV^^ But (m/m2)c £ Nt for some c,
hence (0: Gx) Π m*/m"+1 = 0 for n ^ c. The same reasoning shows
that the image of x in R/I is a superficial element for m/L

THEOREM 1.2. Lei {R, m) &β α Cohen-Macaulay local ring of
dimension d > 0. Lei 6e an m-primary ideal and t the nilpotency
degree of R/I. Then

v(I) £ td-ιe(R) + d - l .

Proof. The proof is by induction on d. If d — 1, the theorem
is well-known (cf. [6] or [7]) but we include a proof for completeness.
We may assume that R/m is infinite so that m has a superficial
element x which is also a nonzero divisor. Since d - 1, xmn = mn+1

for some n > 0. We have X(R/xR) = \(I/xI) = e(R), where λ(JS)
denotes the length of an i?-module JS. The exact sequence

0 > ml/xl > I/xI > I/ml > 0

gives X(I/mI) = X(I/xI) - X(ml/xl) = e(i?) - X(ml/xl).
Assume c£ > 1. Again assuming that jB/m is infinite as we may,

there is a nonzero divisor x such that x is a superficial element for
m. Pass to the d — 1 dimensional Cohen-Macaulay ring JB/α?*. //#*
is m/^-primary so, by induction,

v(I/x*) ^ t'-

Hence t (I) ^ viJ/a;') + 1 ^ td~2te(R) + d - 1.

REMARKS. 1. If (i2, m) is regular local and d ^ 2 then v(7) ^
gίd~2 + d — 1, where r̂ is the degree of /, i.e. IQ m9\m9+1.

2. (1.2) generalizes a result of Abhyankar [1], In [1], Abhyankar
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shows that the Cohen-Macaulay hypothesis is necessary.
If (R, m) is a ώ-dimensional local ring, the Hubert function H

of m is defined as follows:

H(n) - v(mn) = X(mn/mn+1)

for integers n ^ 0. For large n, H{n) is a polynomial of degree
d — 1. If we apply (1.2) to / = mn we obtain, for Cohen-Macaulay
rings, a polynomial of degree d — 1 which bounds H{n) for all n.

COROLLARY 1.3. Let {R, m) be a Cohen-Macaulay local ring of
multiplicity e and dimension d > 0. Then, if P(n) is the polynomial,
P(n) = end~ι + d - 1, H(n) ^ P(n) for all n > 0.

Using a trick of Kirby [4] we have

COROLLARY 1.4. Let I be an ideal ideal of a d-dimensional
Cohen-Macaulay local ring (R, m), d > 0. Define the Artin-Rees
number of I, α(J), to be the least integer a such that I f) ma Q IΊBL-

Then

v(I) £ ad~ιe{R) + d - 1 .

Proof. IIIm = I/Im + / f] ma = I/I Π Im + Ήka = I + ma/Im + m\
Hence v(I) ̂  v(J + mα) - λ(/ + ma/m(I + mα)). So by (1.2), v(I) S
ad"xe{R) + d - 1.

Note that if i2/I is Cohen-Macaulay, then a(I) ̂  β(i2/I) + 1 but
in general a(I) is not bounded by e(R/I).

2. Applications* If (JB, m) is a local ring, an ideal I is a
Cohen-Macaulay ideal if R/I is a Cohen-Macaulay ring.

THEOREM 2.1. Let (Rf m) be a d-dimensional Cohen-Macaulay
local ring. Let I be a Cohen-Macaulay ideal of height h > 0. Then

Proof. We may assume R/m is infinite. The proof is by induction
ons = dim Rjl. If s = 0 then by (1.2) it is sufficient to note that
e(R/I) = X(RII) ^ nilpotency degree of R/I.

Assume s > 0. By (1.1) there is a nonzero divisor x in m such
that x is superficial for m, and the image of x in iϋ/I is a nonzero
divisor in R/I and is a superficial element for m/I. We pass to the
d — 1 dimensional Cohen-Macaulay ring JS/# and to the height h
Cohen-Macaulay ideal (/, x)/x. By induction v(I) = v((I, x)/x) <Ξ
e(R/(I, x))h-ίe(R/x) + A - 1 = e{R/I)h-ιe{R) + Λ - 1.



520 JUDITH D. SALLY

REMARKS 1. For height 1 ideals I, (2.1) gives Rees' theorem [6]
stating that v(I) ^ e(R). If height 1 = 2 , Rees [6] has the result
v(I) 5£ e(R) + e(R/I) which gives a better bound than (2.1) except
when R or R/I is regular.

2. If R is an equicharacteristic regular local ring, Becker [2]
has results similar to (2.1).

Another application of (1.2) gives a bound for what we will call
the reduction exponent r(m) of m, where m is the maximal ideal
of a ώ-dimensional Cahen-Macaulay local ring (R, m). Assume that
Rfm is infinite. r(m) is the least integer r such that there exists
a system of parameters xl9 , xd of degree 1 in G = R/mQ)m/m2 φ •
with ^Jtr c (χ19 , xd) where ^ = m/m2 φ wf/m3 φ .

THEOREM 2.2. Let (R, m) be a d-dimensional local Cohen-Macaulay
ring of multiplicity e(R) with R/m infinite and d > 0. Then

r(m) ^ d[e(R) - 1 .

Proof. In our case the main theorem of Eakin and Sathaye in

[3] states that H(n) <(n~^d) implies r(m) ^ n. By Corollary 1.3,

H(n) ^ nd~1e{R) + d — 1. So it is sufficient to note that

ld\ e(R) + d
(d[ e(R))d-1e(R) + d- 1 <

This generalizes a result in [7] where R was assumed to be of
dimension 1.
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