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LATTICE ORDERINGS ON THE REAL FIELD

RoBERT Ross WILSON

Since every total order is a lattice order, and the real
field R is a totally ordered field, it is a lattice-ordered field.
In 1956 Birkhoff and Pierce raised the question of whether
R can be made into a lattice-ordered field in any other way.
In this paper we answer their question affirmatively by show-
ing that there are, in fact, 2° such orderings, where ¢ is the

cardinal of R.

Introduction. We answer the question of the existence of such
orderings, raised by Birkhoff and Pierce in [2, p. 68], in Theorem
1, and find the number of orders in Corollary 1.2. We denote the
rational field by @, the positive cone of R (i.e., the set of reals =0)
in the usual order by R", and the positive cone of @ by Q".

THEOREM 1. Let L be any subfield of R except Q. Let K be any
proper subfield of L, such that L is algebraic over K. Then there
is a relation < on L, with positive cone P, such that (L, £> is a
lattice-ordered field which ts not totally ordered. Moreover:

(1) The order < restricted to K is the usual total order (KN
P, =KnR").

(2) K is the largest totally ordered subfield of L under <.

(38) The order < 1s a distributive lattice order.

(4) The order < is R-compatible (P, = R™).

(5) LN R is quotient-represented by P,, in the sense that
Jor each le LN R*, there exist p, g€ P, with g # 0, such that | = p/q.

We will give the proof in Section 2, where we state the main
lemma (see 2.2). We will use the assertion (2) in counting the number
of such orders, and we will need the technical feature (5) in the
construction process.

COROLLARY 1.1. Let L be a subfield of R containing k£ distinct
subfields K such that L is algebraic over K. Then L admits at least
£ distinct lattice orders.

Proof. By (2), these distinct subfields give distinct orders.

COROLLARY 1.2. R admits exactly 2° and the algebraic numbers
A admit exactly 2% lattice orders.

Proof. R is known to be algebraic over 2° distinct subfields and
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A over 2%,

In fact, R may be replaced by any uncountable subfield in Corollary
1.2. Similarly, 4 may be replaced by any other countable subfield
which is algebraic over 2% gubfields.

We observe that R-compatibility excludes from consideration many
orders on proper subfields L. For example, for every R-compatible
order on Q(1/ 2) the non-trivial field automorphism produces another
order which is not R-compatible. Even though it can be shown that
R-compatibility follows from quotient-representability, which plays
an important role in the construction process, we require R-compa-
tibility during the inductive step to show that quotient-representability
extends. Thus we cannot dispense with R-compatibility and, indeed,
must prove it independently.

When P, is the positive cone for an order < on some subfield
M of R, we will refer order expressions to P, by (wrt P,) meaning
with respect to P.

I am especially indebted to K. Baker for many valuable sugges-
tions and to the reviewer for extensive clarifying remarks.

2. Main lemma and proof of Theorem 1. Our method of
proof employs judiciously chosen algebraic bases to extend orders.
Thus, if K is ordered by < with positive cone Py, if M is an extension
field of K, and if B is a basis for M over K, we write Px(B) for
the set of finite sums of the form > kb, with k,e¢ P, and b,e B.
For B={b, -+, b,}, we write Pg(b,, ---, b,).

REMARK. 2.1. If Py is the positive cone for a lattice order on
K and B is a basis for M over K, then it is immediate that Px(B)
is closed under addition and that P.(B) induces a lattice order <
on M considered as a group (since ordering, like addition, is computed
‘coordinatewise’). Moreover, if the order on the ‘coordinate’ field is
total, then < is distributive.

To prove Theorem 1, we start with Py = KN R* and consider
the collection m = {(M, B)} where M is an intermediate field and
where B = By is a basis for M over K such that BC LN R" and
guch that:

(a) Px(B) is closed under multiplication (for which it will be
sufficient to show that b-c€ Px(B) for all b and ¢ in B):

(b) Px(B) is R-compatible;

(¢) Pg(B) quotient-represents M N R*; and

(d leB.

By (a) and (c) above and Remark 2.1 we see that the order =
on M with positive cone Pg(B) make (M, <> into a lattice-ordered
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field satisfying (3) and (5). Our original choice of P, as KN R* and
(d) give (1) while the fact that distinet elements of B are incomparable
with respect to < gives us (2). Finally, (4) is just (b).

Thus, Theorem 1 will be proven if we show that (L, B, belongs
to m. In fact, we will employ induction, in the form of Zorn’s
lemma (though we may also view it as a transfinite induction using
successive simple extensions) to choose a maximal (M, B, from m
and we will see that M, = L. For the inductive step we will require
the following lemma.

MAIN LEMMA 2.2. Let M and M’ be subfields of R with M «a
Jfinite algebraic extension of M. Suppose that P, is the positive cone
of a lattice order < on M which quotient-represents MNR*. Then
there exists ae M' such that

(i) M = Mla],

(ii) o« satisfies a" =a,_ @'+ --- + 0, wWith o, P, (where n
is the degree of M’ over M),
(iii) P,QQ,«a, ---, a*") ts R-compatible, and

(iv) Py(1, «a, ---, ") quotient-represents M’ N R™.
The proof will be given in the next section.

For the inductive step we suppose (M, B> is a member of m so
that B is a basis for M over K satisfying (a), (b), (¢) and (d). We
suppose that M = L, so that there exists a proper simple extension
M of M with M"C L. We choose e M’ using the Main Lemma
and consider B’ = {ba’|beB,0<i<n—1}. Now B'DB and is a
basis for M’ over K satisfying (a), (b), (¢) and (d). Thus {(M’, B e
m. Clearly, any maximal member M, of m must be L.

3. Proof of Main Lemma. In outline, the proof proceeds as
follows:

Step 1. We find a g such that M’ = M[g], 8 > L(wrt R*), and
B satisfiles " =0b,..8"" + --- + b, with b,e M N R*. That is, (ii)
holds except that M N R* replaces P,. (This step depends only on
the usual topology of R and C and the usual order structure of R.)

Step 2. We use quotient-representability to replace g by aec M’
so that (i) M’ = M[a], « > 1 (wrt R"), and « satisfies (ii). We write
Py for Py(1, @, ---, @*"). It is clear that P,y Cc M N R* (i.e., that
P, satisfies (iii)).

For use in the remaining steps we define
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QY = {p/a|p, € Py, q # 0},

which is the positive cone of an R-compatible partial order on M’.

Step 8. To show P, quotient-represents M’ N R* it is clearly
sufficient to show M' N R* C Q). To this end, we show that Q* c Q/,
and, after defining the concept of Q-approximability, we show how
Q-approximability of M’ implies M’ N Rt C QY.

Step 4. We show that a is Q-approximable, that every element
of M is Q-approximable and that the Q-approximable elements of M’
constitute a subring and therefore must be M[a] = M’ itself.

Details of Step 1. We let ¥ be such that M’ = M[7] and its
minimal polynomial is h(x). We suppose ¥ =7, 7, ---, 7, are all
the (necessarily distinet) roots of % in C. We show below how to
construct a non-singular linear fractional transform T with rational
coefficients so that 8 = T(v) > I(wrt R) and for 2< ¢ < n the 8, =
T(7,) are “sufficiently close” to —1/n. Since the coefficients are con-
tinuous in the roots, a comparison with (x 4+ 1/»)** shows that
(x—B) - (x—B)=2a""+ ¢cpx”*+ -+ + ¢, satisfies 1 = ¢,_, >
Cpy > v+ > > 0. (See [3, L. 6.2, p. 40] for details, including proof
that “sufficiently close” means “within ¢ = 1/n*’.) Therefore g(x) =
(@—pB)@—B) - (@—p,) =2"—b, 2" — .. — b whereb, =c¢,8 —
i, >¢—¢_,>0for1<i<n—1and b =¢B >0 Wenote that
g(x) is the minimal polynomial of @ over M and is computed by
clearing the denominators of A(7'(x)) and scaling.

To construct T we let ¢ = 1/n* as above and choose rationals ¢
and s such that 0 < t(l/e + 1/2) < min|g — B;| for =2 and 0 <
B/t —s < 1/2. Then T is the composition of the following maps:
r—w/t;x—2x — s;x—1/x; £ — x — 1/n. (After the first two the image
of v is in the interval (0, 1/2) and the rest of the roots are outside
a circle of radius 1/e centered at 0, and after the last 8 = ¢t/(v — ts) —
1/n > 1 and the other B3; are within ¢ of —1/n.)

Details of Step 2. Using quotient-representability, we choose
de P, so that db,e P,, for 0 <7< n — 1 and so that d > 1(wrt R*).
(The latter Condition may be achieved by positive integer scaling
without affecting the former conditions.) Then a =dg has f(x) =
arg(z/d) = 2 — a,_ 2" — .-+ — @, as its minimal polynomial over M
and a, = d"*b,€ Py for 0 <4 < n — 1. That is, « satisfies (ii). Clearly
Mla] = M[B] = M[7] =M.

Details of Step 3. Let re€ Q" and pec P);,. We may scale p by
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positive integers, as above, and by reciprocals of such using [1, Thm.
3, p. 293] with the result rp in P},. Since we may write r = rp/p
for any non-zero p, we see that ¢ e Q.

We say that m e M’ is Q-approximable if for each positive rational
t there is a rational s such that m < s < m + t(wrt Q%). (Of course,
m—t<s-—t< m(wrt@Q@)) also.)

Now if m > O(wrt R*) and m is Q-approximable, we choose a
positive rational ¢ so that m — ¢ > 0(wrt R*) and rational s so that
m < s < m+ t(wrt Qy). By R-compatibility

s—t>m—t>0wrtRY),

and since QT < QYy, s —te Q). Thusm = ((m + 1) —s)+ (s —t) e Q}
by the additive closure of Q.

Details of Step 4. To show M is Q-approximable, we arbitrarily
choose m in M and ¢ positive in Q. By density of Q in R, there is
a rational s such that m <s <m + #(wrt R") and by quotient-repre-
sentability of M N R* by P, these inequalities hold wrt@,. But
Q,; C QY s0o m < s < m+ t(wrt Q)), which is Q-approximability.

To verify that « is Q-approximable, we again choose an arbitrary
positive ¢ in Q. Since f(x) =0 and f is separable, the derivative
Sf(@) is non-zero. Because a > 1(wrt R") this implies there is a
rational s > 1(wrt R*) such that 0 < f(s) < «(wrt R*). For such s
we show a < s < a + t(wrt Q%) and hence that « is Q-approximable:

First, since s, f(s), and ¢ are in M and M is quotient-representable,
we see that s > 1 and 0 < f(s) < #{(wrt Q) and hence (wrt Q}). Next
we note that Q' is closed under division and s — a = f(s)/(f(s)/(s — a)),
80, to show s — a > O(wrt Q}), we need only show f(s)/(s — a)e Q.
Now f(s) = f(s) — f(@) = (8" — @") — @ s(s" " — @) — s —ay(s — ).
Thus f(s)/(s —a)=s"""4+ d,,s"* - -+« + dy, Where the d, = a" " —
Gy "0 — oot — a,, are “scaled truncations” of f(a). In fact, d, =
(fl@) + aat + -+« + @)/t = (@, @ + +-- + a)/a**' e Q). Since s >
1> 0(wrt QY), f(s)/(s — @) >1>0(wrt Qy). Thus 0 <s—a < f(s) <
t(wrt Q%) so that @ < s < a + t(wrt Q’).

To finish Step 4 and thus the proof of the Main Lemma, we
need to show the set of @-approximable elements of M’ is a subring.
The proof of closure under subtraction is straightforward, after
recalling that we can approximate below also. The proof of closure
under multiplication, though resembling the proof of the product rule
for derivatives, takes some care. At several points when dealing
with the rationals used as “epsilons and deltas” by the approximating
process it is necessary to switch from R* to @), using Q" cC Q' or
from Q) to R™ using R-compatibility.
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4. Alternate theorem, examples and questions. By a slight
modification in the proof of Theorem 1 we can prove Theorem 1%,
which differs from Theorem 1 in that (1) and (2) are replaced by
their complete opposites (1*) and (2*) and in that (0*), which has
no counterpart in Theorem 1, is added.

(0%) There are mo totally ordered subfields of L under <.

(1*) The order =< restricted to K is the trivial partial order.
(In particular, 1 % 0.)

(2*) K 1is the largest trivially ordered subfield of L under <.

Before we prove Theorem 1*, we note that Corollaries 1.1 and
1.2 also hold for this type of order. In the proof of Theorem 1*
we indicate by * the changes from the proof of Theorem 1.

We again start with P, = K N R* and seek B* c L N R* satisfying
(a), (b) and (c) as before, but

(d*)1¢ Py(B*)

instead of (d). Now (3), (4) and (5) follow as before and (d*) implies
(1*). To see this, we suppose (1*) false and pick k€ K N Px(B*) with
k # 0. Then 0 < k(wrt R*) by R-compatibility and so k¢ KN R".
Thus 0 < (k™% = L(wrt Px(B*)), contradicting (d*).

The fact that every be B* satisfies 0 < b(wrt Pi(B*)) gives (2*)
while (1*) shows that @ must be trivially ordered and this gives (0*).

The Main Lemma is unaltered and applies as before during the
inductive step to show that (a), (b), (¢) and (d*) are preserved by finite
extensions. Thus, in order to achieve (d*), we start the induction
so that the first nontrivial finite extension has basis B* = {«a, a?, - -,
a*} rather than {1, @, ---, a"'}. Then we note that, in the proof of
the Main Lemma, the b, in step 1 and hence the a, in step 2 are all
nonzero. Thus 1= (a"”— @, @' — ... — a,)/a, ¢ Px(B*), which is
(d*).

The following examples illustrate how bases are constructed using
the Main Lemma. Of course, all of them satisfy (a), (b), and (c) and
either (d) or (d*).

EXAMPLE 4.1. We let M =Q, M’ = Q(7) where 7* =2 and 7 >
O(wrt R*) and choose ¢t = 1, s = 1. This gives g satisfying 8* =26+ 1
and choosing d =1 gives @« = 8. Thus B = {1, a} satisfies (d) and
B* = {a, a?} satisfies (d*). Note that 7 is neither in Pg(B) nor in
Py(B*).

EXAMPLE 4.2. We let M = Q(a), M’ = Q(7') where v*=7 and ¥’ >
O(wrt R*), and choose ¢ = 1/2, s = 2. This gives g satisfying 5”7 =
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(¢ — 1B + (8a — 1)/4. The coefficients, while positive wrt R* are
not positive in either order of 4.1. If P, = Py(l, @), then « — 1 =
(¢ + 1)/a and 8a — 1 = (ba + 3)/a. Thus we choose d = a and get
o' satisfying a” = (e + D’ + (ba® + 3a)/4. This gives B = {1, «, «,
aa’}. On the other hand, if P, = Py«a, &*), then a — 1 = (¢* + ),
3a — 1 = (ba? + 3a)/a® and we choose d = a®. This gives a* satisfying
a* = (a® + a)a* + (ba* + 3a®)/4 and B* = {a, &, aa*, a’a*}.

We note that Corollaries 1.1 and 1.2 fail to determine the cardinality
of the class of lattice orders for those countable subfields L which
are algebraic over only countably many subfields K. For instance,
Corollary 1.1 only accords finitely many lattice orders to simple
extensions L of @, but:

COROLLARY 4.3. If L is a simple extenston of Q then L admits
at least Y, lattice orders.

Proof. We recall from the proof of Theorem 1* that in f(x) =
2"~ a,_, "t — +.. — @, the minimal polynomial of &, the (rational)a,
are greater than 0(i.e., «a satisfies (i1)). Thus there are W, distinct
sufficiently small rationals » such that the minimal polynomial of
o — » still satisfies (ii).

Questions 4.4.

(a) Do any countable subfields L of R which are algebraic over
no more than ¥, subfields have 2% orders?

(b) Are there any R-compatible lattice orders on subfields I
of R which do not quotient-represent L N R*?

(¢) Besides the R-compatible orders constructed here and those
on subfields related to R-compatible orders by automorphisms, what
other lattice orders are there? In particular, are there any non-R-
compatible orders on R itself?
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