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HARVEY WOLFF

For a symmetric monoidal closed category B satisfying
certain completeness conditions, consider a PL-category %, a
subcategory X of % which admits a B-calculus of left frac-
tions, and a B-monad T = (T, 7, #) on Y. Suppose T is com-
patible with 5 so that a B-monad 2/ is induced on A[Z-!]
and the canonical projection B-functor @: A — A{I"!] induces
a B-functor L: AT > A[Z-']"" on the B-categories of Eilenberg-
Moore algebras. Suppose that 2 is conice and A’ has coequal-
izers. We prove that, if L preserves coequalizers (which
is true in the case where 7' preserves coequalizers), then L
is the canonical projection for the B-localization of a subca-
tegory of L7 which admits a B-calculus of left fractions.

In [12] (and again in [13]) we studied the question of the rela-
tionship between B-localizations and B-monads. The principle concern
was with the question of when the process of forming a localization
“commutes” with the process of forming the category of algebras for
a monad in the following sense: given a monad < = (T, 7, ) on a
B-category . and a B-localizing subcategory ¥ < .97, when is there
an induced monad %' on the localization 2[3~'] whose algebras are
a localization of the category of algebras for T? In [12] we dealt
primarily with the situation in which the canonical localization functor
had a left or right adjoint. One result (Proposition 3.11) did deal
with the case in which the canonical functor @: % — %[¥~'] did not
have an adjoint. This result, however, had many complicating
hypotheses and since in many instances of localizations the canonical
functor does not have an adjoint, it is desirable to give a more
thorough examination of this case. It is for this purpose that this
paper was written.

The main result we prove is the following. Suppose B is cocom-
plete and finitely complete, and that any filtered colimits which exist
in ¥ are such that they commute with equalizers and are preserved
by the canonical functor V: 8B —Sets. Let ¥ < U be conice and admit
a B-calculus of left fractions. Let T be a L-monad on I such that
OT(s) is an isomorphism for all s€¥. Then there is a B-monad <’
on A[X'] and a BV-functor L: A" — A[Z '] such that if A’ has coe-
qualizers which are preserved by L then S = {a ¢ A*|®@ U(«) is an iso-
morphism} admits a B-calculus of left fractions and AT[I |~ A[Z )"

There are many symmetric monoidal ¥ which satisfy the hypo-
thesis. For example, Sets, R-modules for a commutative ring R,
the category of semi-simiplicial sets and in general, any category
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which is finitarily monadic over sets with respect to a commutative
monad.

As an immediate consequence of the above result we get that
if A has V-coequalizers which are preserved by T then %” has coe-
qualizers which are preserved by L and so the conclusions of the
above result hold. This removes many of the complicated hypothesis
in 3.11 of [12].

In the last section of the paper we give some illustrative examples
of the main results.

Throughout we assume that 8 is a symmetric monoidal closed
category. We also assume that the reader is familiar with the
theory of B-monads. (See [12] or [3].)

1. Main results. We begin by recalling some definitions from
the theory of B-localizations. Let 2 be a B-category and X C ¥,
any subcategory of 2, with the same objects as 2. By a B-localization
of .7 with respect to ¥ we mean a B-category N[Z '] together with
a B-functor @: A — A[Z '] such that &(s) is an isomorphism for all
seX and if F: A — B is a B-functor such that F(s) is an isomorphism
for all seX then there exists a unique B-functor F: A[X~] — B such
that 7@ = F. We shall take @ to be the identity on objects. If
A[X*] exists for X we say that 3 is B-localizable.

If 3 C 9, is B-localizable we call it B-well-localizable if for every
pair of LB-functors F, G: A[Z '] —B, the correspondence a — ad is
one-one and onto between B-natural transformations « from F to G
and B-natural transformations from F® to G@®. It can be shown
that if ¥ has pullbacks then any B-localization is LB-well-localizable.

Let ¥ £ U, be a subcategory and let A be an object of %. The
category A/Y is the category with objects s: A—B, s€X. A morphism
from s: A— B to §: A—¢ is a morphism f: B—C in A such that

A
s/ \s\/\
B——f—> C

commutes. Let Q4 A/3 — 9 be the obvious projection. Then ¥ is
said to admit a B-calculus of left fractions if 3 is B-localizable and
for all A, B,

A[5~|(B, 4) = lim (4/3 2> 4 22 ),

Now let .9~ = (T, 7, ) be a B-monad on U and suppose that I = 2,
is B-localizable. We say that ¥ is compatible with ¥ if @T(s) is an
isomorphism for all se€X. It is easy to show that T is compatible
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with Y if and only if there exists a B-monad T’ on .&7[37'] such
that @7 = T'0.

PROPOSITION 1.1. Let 3 C 9, be B-well-localizable and let T =
(T, v, 1) be compatible with 3 and let T' be the induced monad on
N[Z]. Then there exists a B-funmctor L:UT — A[Z]" (A" is the
category of algebras over the monad) such that

1. LF = F'® (F is the free functor F: I — A7)

2. UL =0U (U is the underlying functor U: &r” — &)

3. L preserves B-coequalizers of U split pairs (see [7])

4, If M:9"—B is a functor which preserves coequalizers of U
split pairs, where B has B-coequalizers of reflexive pairs, and which
inverts the morphisms inverted by L, then there exists a unique B-
functor of M: A2 — B with ML ~ M (unique up to equivalence).

Proof. The existence of L follows from the well-known properties
about lifting of functors to the algebra category (see [3]). In par-
ticular we define the following action ¢ of 7" on @ U%c: T'OU =0T U =

oUFU2" 0U. One checks that this is an action. Hence L(A, ) =
(OA, ®Us). Note LF(A) = L(TA, p,) = (OTA, @Ue) = (T'0A, 1) =
F'o(A).

If A= B—Cis a coequalizer diagram which is U-split then since
UL = @U applying U'L to the diagram gives a U’ split coequalizer.
Since U’ reflects coequalizers of U’ split pairs, L applied to the
diagram gives a coequalizer.

To finish the proof of Proposition 1.1 we need the following general
lemma. The proof is an easy consequence of some work of Street
[11} so we omit it (see also [9]).

LEMMA. Let &, = (S, 7, ) and &, = (S, s ) be B-monads
on B-categories N and B respectively, and let H: A —B be a B-
Junctor. If B5 has B-coequalizers of reflexive pairs (relative to U,)
then there exists a one-ome correspondence (up to natural equivalence
of functors) between fumcsors H': U5 — B2 such that H'F, = F,H
and which preserve coequalizers of Up-split pairs and notural
transformations N HS,— S,H satisfying (1) ptH- SA-AS, = N+ HY, and
(i) - H7, = N, H.

The above lemma is utilized in the following way. First we
note that since LF = F'Q, if scX then F(s) is inverted by L. Con-
sequently, MF(s) is an isomorphism for all se€X. So there exists
a unique B-functor N: A[Z '] —B such that NO = MF. Now define
M NT'— N to be the natural transformation corresponding to Me
F:NT'0O = NOT = MFT — MF = N®. 1t is easily checked that M\
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satisfies conditions (i) and (ii) of the lemma relative to the monads
T on U[Z!] and the identity on B. So there exists a unique
M U3 —B with MF' = N. Now MLF = IIF'¢ = No = MF.
Since both ML and M preserve coequalizers of U split pairs and
MLF = MF, by the lemma we have ML ~ M.

Before we prove our main result we recall a result from [14].
A subcategory 3 of €, containing the identities of €, is conice (Almkvist
[1, p. 451]) if, for every object A c €, there is a set of objects &
such that, for every s: A—C in XY, there exists u:C— D with De
“, and u-se’.

LEMMA 1.2. Let B be cocomplete with finite limits such that
V: 8 — Sets commutes with filtered colimits and filtered colimits
commute with equalizers in B. Let € be a B-category and 3 = €,
be conice such that C/Y is filtered for all C. Then X admits o
B-caleulus of left fractions iff there exists a B-category B and a
B-functor L: C— B such that:

(1) L{s) is an isomorphism for each s€X;

(2) L is the identity on objects;

(3) For every A, Be®B, B(A, B) = lim,,: €(4, QF) with univer-
sal natural transformation given by «/rs:z = B(A, L(s) ™)L,z where
B2 EeB/s.

Furthermore in this case C[X'], = € [2].
Proof. See [14].
The following theorem improves 3.11 in [12].

THEOREM 1.3. Let B be cocomplete with finite limits such that
V:V — Sets commutes with filtered colimits and filtered colimits
commute with equalizers in B. Let ¥ & A, be conice such that X
admits a B-calculus of left fractions. Let T = (T, 1, ) be compatible
with 3. Let L: AT —A[X]" be the functor of 1.1. If AT has coe-
qualizers which are preserved by L, then ¥ = {aecA’|®U(a) is an
isomorphism} admits a B-calculus of left fractions and T[T ']~
A[Z™.

Proof.. We verify the conditions of Lemma 1.2, First we note
that we can assume that Y is saturated, i.e., if @(s) is an isomorphism
then se€3. For if we take the saturation 3, of X, then A/Y is a final
subcategory of A/Y, (see [10]), and thus the same conditions hold.

Now we show that Y is conice. Let (4, 0)e U’ let Dc@, and
let ssA—D be in ¥. Let &2 ={(f, 9)|f+T(s) =g:s-0, ge3 and
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codomain D, of g in %,}. The nonemptiness & is assured since X
admits a Sets-calculus of left fractions and 7'(s)e¥. Furthermore
&P is a set since ¥, forms a set. For (f, g) €S, form the following
“commutative” diagram in A7

(T°4, pT4) —Z2 (1D, 1)

T(a)“/«u () “mm(g)
T
(TA, ) —2, (TD;, 1)

Taking coequalizers yields an object ¥, = (D, £) and a morphism
l,: (4, 6)—¥%,,. Note that I,eX since L preserves coequalizers
and LT%s), LT(gs) are isomorphisms. Let .#;, be the union over all
s: A— D in X of the sets {v;,,(f, 9) €S?}. Finally set § = Ubpes, o
This is clearly a set.

For any t: (4, 0) — (B, 7) in &, there exists D e, and a morphism
9: B— D with gt €Y. Then there exists s €Y with codomain D, € §,,
and u with u4T(g) = sgt. Then uT(gt) = sgt-0. So (u, s)e&2 and
by the construction above there exists a map (B, 7) N ¥ ., such
that w-te¥. So ¥ is conice.

Now we show that (4, ¢)/Y is filtered for each (4, o). It suffices
to show that the usual conditions of a calculus of left fractions hold
in ¥ (see [1} or [6]). The coequalizers condition is clear since A"
has coequalizers which are preserved by L. So we need to show
that if

(4, 6) — (B, 7)

7

(C, 9)

is a diagram in 2" with t e% then there exists s, m with s¢ ¥ such
that sf = m.

Since X admits a calculus of left fractions there is u, ! with
e u: C— D such that uf = lt. Then there exists «': D— D’ and
g: TD— D’ such that w'ud = ¢g-T(w). Now T(t)eZX and g-TI-T(t) =
g-Tt) =9g-T(u)- T(f) = wud- T(f) = w'u- fo =ultc = v'lcT(t). So
there is w: D' — F with we X and w-gTl = wu'lr. Note that if we
apply @, we get a commutative diagram @(w)@(f) = @(1)P(t). Since
@A, dB and @C all have T'-algebra structures given by @(0)@(r) and
@(0) respectively, and, @(u) is an isomorphism @D has a T'-algebra
structure given by @(u)®@(d)T(u)™* such that @(u) and @(l) are algebra
maps. The following equation holds in A[Z']: O(w)@(0)Tu* =
O(u’)"'P(g).

Consider the following diagram in U7
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T*(u) 1)

(T°C, pr0) — ("D, ttp) «————(T"B, t5)
T@)J l#c 1T ou’) 1 l T(wg) T(T)llﬁs
(TC, po) Tera (TE, t5) T (TB, 1)

Taking coequalizers yields a T-algebra (E’, 7) and morphisms a: (C, 6)—
(E’,v) and B: (B, 7)— (E',7) with @ in 3. Then there exists an
isomorphism k: (@D, @(u)@ (V)P T(u)* = &)— L(E', 7) such that h-®(u) =
L(a) and h-90(l) = L(B). For consider the following diagram in
%[ 2—1]1"

LT(wg) Ld !
L(T*D, ) “ S L(TE, ptz) — L(E', )
LysTHou')
l! s

—= (T'D, o) — (D, ¢)

T

(T”D, t4.p)

JZ5

Since L preserves coequalizers and T"@(ww’) is an isomorphism we get
an isomorphism h: (D, €) — L(E", 7) such that he = Ld-T'®(wu’). The
equations A®(u) = L(a) and h-O(l) = L(Bt) are easily checked.
Consequently we have L(af) = L(5t). Hence the coequalizer m
of af and Bt lies in 3. So maf = mpBt and mae’.
Now let (4, o) e %7; then U induces a functor U,: (4, 0)/3 — A/Z.
This functor has a left adjoint F,: A/ — (4, 0)/2 defined as follows.

Let A—— Be A/¥. Consider the diagram

# I
(14, 1) = (T4, 1) =" (4, 0)

To T(s)l L Fals)
(TB, ps)-— (B, b)

where Gy is the coequalizer of T(s)-¢ and T(s)-T(s). Then there
exists a unique F,(s): (4, 0)— (B, b) such that F,(s):0 = G T(s).
Apply L to diagram. Since L preserves coequalizers we get that
Lo is the coequalizer of L, and LTo, and LG; is the coequalizer of
LT(s)- Ly and LT(s)- LTo. But LT(s)is an isomorphism since U"LT(s)=
@ UT(s) and LT(s) is an isomorphism. Hence LF,(s) is an isomorphism
and F,(s)eX. It is clear how F, is made into a functor.

The unit of the adjunction is defined as follows: Let A ~.B
bein X¥/A. Then we set ,(B) =B 2, TB——CE—> B. Now G,-%B-s=
GpT(s) 0, = Fys)-0-m, = F,(s). So ,»® is a map in 4/3.

The counit ,¢ is defined as follows: Let ¢:(4, 6)— (B, 7) be in
(4, 6)/2. Then the following commutes
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(TA, 1)) — (4, 6,)

l T(t) lt

(TB, tt5) — (B, 7)

Hence there exists a unique ,&(B, 7): F,U,(B,7) = (B, b)— (B, 7) such
that .-Gy, = 7 and ,&-F,(7) = t.

It is easily checked that the adjunction equations hold. And so
U, 4 F,. As a consequence we get that U, is a final functor.

Now since (4, a)/f—(—]i+ A/Y is a final functor we have

AE(C, A) = 1im A(C, Q,) = lim WC, Q,U,—) .

Al (4,0)1%
Let (4, 0)—a—>(B, 7) be in J; then the following diagram commutes

A7((C, S), (B, 7)) — WC, B)———— A(TC, B)

lw l%i”

ALE(LAC, 0), L(4, 0)) — AXT)(C, A) =S A2T(T'C, 4)

TCB
Tﬁlx

where the +’s are defined in Lemma 1.2. Hence taking colimits
over (4,0)/F yields lim, o/~ A((C, 9), Qui,»)-=U[Z " (I(C, @), L(A, 0))
since filtered limits?ommute with equalizers.

Hence if we let £&& be the category whose objects are those of
A” and such that ZZ((4, o), (B, 1)) = W21 (L(4, o), L(B, 7)) we get
by the lemma that <Z = A7[3!] and that 3 admits a B-calculus of
left fractions.

To show that T[] ~ A[Z']* we need only show that each
%' algebra (A4, ¢) is isomorphic to L(ﬁ, a) for some Z-algebra (ff, o).
Now ¢ = s'a: T'"A — A where TA—— C «—— A. Let the following
diagram in A7

Ta d ~
(Tsz !""A) ——T—-——% (TC, /“‘0) — (A: (1,)

S Ha

be a coequalizer. Applying L gives the following coequalizer diagram
in A2

' ’ /___)a ' n Ld A
(T4, 1) ————= (T'Pe, 1£) =% L(A4, &) .
T y

Ps-pry

It is clear then that (4, o) ~ (4, &).

COROLLARY 1.4, Let B be as in 1.3. If A has B-coequalizers
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which are preserved by T and 3 admits a LB-calculus of left fractions
then X admits a B-caleulus of left fractions and A[Z~] ~ A[Z ™.

Proof. In this case L is easily seen to preserve coequalizers
since U’ reflects coequalizers.

REMARK. In certain situations it is possible to eliminate the
hypothesis that 3 be conice in Theorem 1.3. The place where this
is used is in verifying that A[Z'|"(L(C, 9), L(A, o)) is the proper
direct limit. In the case L{ = Sets or B = Abelian groups, for example,
a functor @:€—B is a left fractional category of € with respect to
Y if: (i) 9(s) is an isomorphism for all s in ¥; (ii) every morphism
S in B can be written as f = O(s)"'P(g) for seX; and (iii) O(f) =
@(g) if and only if there is an se€ X such that sf = sg ([1], [6]). So
in the situation of 1.3 with 8B = Sets or Abelian groups we need to
verify condition (ii) for the functor L: 9" —B. Let f: L(A, ¢)—
L(B, 7) be a morphism. Then U'(f) = @(s)"‘¢(a) where A —%» C «>— B.
Since s is an isomorphism @C has a ¥'-algebra structure given by a =
&(s)-O(7)@(Ts)* for which both @(a¢) and @(s) are ¥'-algebra maps.
First we note that since 3 admits a calculus of left fractions there
exists s':C—C’ and e: TC— C’ with s’ X and s'st = e¢Ts. Conse-
quently @(s)P(z)P(Ts)™* = O(s')"'P(e). Now since @(a) is an algebra
map 9(a)-0(c) = O(s')'@(e)@(T(e¢)). Now consider the following dia-
gram in A7

(T°A, pTA) —2 &, (T°C, pC) —Z2%— (T*B, #TB)
yAJ{ l To ;szz(ts')J l T(te) ;tB“ T(r)

(T4, p4) ¥, (rD, pD) -2, (B, 1B)

This diagram “commutes.” Taking coequalizers in %" gives maps
(4, 0) — (C, &) —— (B, 7). Applying L gives

14, 0) 25 16, &) & LB, 7)

in A[X]*. Now LS5 is an isomorphism since L preserves coequalizers,
and LT%s and LT(ts's) are isomorphisms. Now one verifies that
f = Ls§* La.

2. Examples. In this section we present some examples of the
results in §1. In the following, when we refer to the dual of a
result we mean to dualize categories, functors, etec. over B and not
B itself, just as in ordinary set-based categories when one dualizes
a statement one does not also dualize the base category sets.
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2.1. Let B be any symmetric monoidal closed category which
satisfies the conditions of 1.8 and such that 1 is terminal (e.g., Cat
or Sets). Let A be any B-category with finite B-colimits. Let D be
a fixed object of Y. Then we can form the BV-monad T = (— 1 D, 7, 1)
where (— 1. D)A = A 1| D; n(A) is the canonical map into the coproduct
and p(A: (AL D)L D—A1LDis A 1LV where /V is the codiagonal.
The category of algebras for T is the B-category of objects under D.
For any 3 € 9 which admits a B-calculus of left fractions we have
that T is compatible with 3 since if @: % —A|{Z*| is the canonical
functor, @ will preserve finite coproducts. So if feX, @(f 1L D)=
@f 1L @D is an isomorphism. Since — i D preserves B-coequalizers
we have that 1.4 applies to any conice X admitting a B-calculus of
left fractions. In this case the induced monad ¥’ on A[¥ '] is — 1L @D
and A[X* is the B-category of objects under D.

Dually, one could consider a B category 2 with finite limits and
for a fixed object De? form the B-comonad & = (—zD, ¢, §) where
(—xD)A = A x D;e¢ is the projection onto the first factor; and dA:
AX D—(AxD)x Dis Ax 4. The category of coalgebras is the
B-category of objects over D. Then, for any ¥ & 9 which admits
a B-calculus of right fractions and is nice, G will be compatible with
Y and the dual of 1.4 applies.

2.2 Let B be the category of abelian groups. Then U satisfies
the conditions of 1.3. Let 2 be any abelian category. A nonempty
class € of objects of U is called a Serre class if for every exact
sequence 0 - A—B—C—0, 4, CcC if and only if Be€. If 3, is
the class of all morphisms with kernel and cokernel in €, then it is
well-known that 2, admits a B-calculus of left and right fractions.
For any B-monad £ = (T, 7, ¢) on A such that T is exact and T(C) e €
for all Cc€ we have that T is compatible with 3. Consequently
1.4 applies. So 5, admits a calculus of left fractions and A[S'] ~
AL

For some explicit examples, let 2 be the category of abelian
groups. Let R be a ring with 1 and let T = (—Q R, 7, ) where
NA: A— AR R is defined by nA(@) =e¢&®1 and pA:(AQR) QR —
AQR is defined by pA((a Q7)) R 7)) = a Q (ry-7,). Then T is a B-
monad whose algebras are the R-modules. Suppose that R is torsion-
free as an abelian group. Then T = —® R is exact. So for any class
€ such that CQ Rec€ for all Cc€ will satisfy the property that
T is compatible with X,. This the the case, for example, if € is
the class of finitely generated groups and R is a ring whose underlying
group is finitely generated and torsion-free; or if € is the class of
groups C such that Card (C) < W, for some fixed infinite cardinal
W. and R a ring whose underlying group is torsion-free and such
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that Card R < W,; or, if & is any complete class (i.e., Ce€ and
Ac¥l imply CQ® Ac®) and R any ring (see [12] for proof that
—@® R is compatible with X).

2.3. Let B be a symmetric monidal category which satisfies the
conditions of Theorem 1.3. Let % be a V-category which has V-
coequalizesr. Let £ = (T, 7, ¢#) be an idempotent B-monad on A.
Now since the algebras for T are a B-full reflective subcategory,
we have that %¥ has B-coequalizers. Now if Y admits a Z-calculus
of left fractions (and is conice) and T is compatible with ¥ then the
conditions of Theorem 1.8 will be satisfied.

For further remarks about this example see [13].

2.4. Let B be the category of abelian groups. Let R be a
commutative integral domain with unit and let ¥ be the category
of R-modules. Let a:R-—S be a ring homomorphism where S is a
ring with unit which is finitely generated as an R-module and such
that the image of « lies in the center of S. Let & = (Hom, (S, —), ¢, 9)
be the comonad defined by Hom (S, —)(A)=Hom(S, 4); cA: Hom,(S,4)—
A is defined by ¢A(f) = f(1); and dA: Homz(S,4)— Homx(S,Hom, (S,4))
is defined by dA(f)(s)(s) = f(ss). The category of coalgebras is the
category of S-modules.

Now let 3 be the essential monomorphisms in R-mod. Then
R-mod [37!] is the spectral category of R-mod denoted by Spec R
(Is5]). Furthermore G is compatible with 2. For if ©: N— M is an
essential monomorphism we must show that if A S— M is an R-
homomorphism then there is an re R, r = 0 such that 2 factors
through 4. But this is clear since % is essential and S is finitely
generated as an R-module. Consequently the dual of 1.4 applies.
Hence 3 admits a calculus of right fractions and S-mod[3!] ~
(Spec R)s: where (Spec R);. is the category of coalgebras over G'.
Since Y consists of all those S-morphisms which when considered as
R-homomorphisms are essential monomorphisms we have that I is
contained in the collection of essential monomorphisms of S-mod.
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