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SEQUENCINGS AND STARTERS
B. A. ANDERSON

B. Gordon characterized sequenceable Abelian groups as
those Abelian groups with a unique element of order 2. In this
paper Gordon’s argument is generalized to prove that there are
non-Abelian sequenceable groups of arbitrarily large even order.
It is also noted that the sequencings described by Gordon are
related to 1-factorizations of complete graphs and to Howell
Designs.

1. Introduction. Suppose G is a finite group of order n with
identity e. A sequencing of G is an ordering e, a,, -+, a, of all the
elements of G such that the partial products e, ea,, ea,as, -+, ea, - - a,
are distinct and hence also all of G. Sequencings arose in connection with
the problem of constructing complete Latin Squares [S]. Later [8] it was
noticed that sequencings can be used to decompose complete directed
graphs into directed Hamiltonian paths. Other possible uses of sequenc-
ings are described here. It turns out that the sequencings of Gordon all
induce 1-factorizations of an appropriate complete graph via associated
“starters” [6, p. 176-177]. Certain sequencings and their ‘“‘starters” also
induce Howell Designs of type H(2m —2,2m) by the “starter-adder”
method [6, 176-177]. Thus, it appears that sequencings might have a
broader applicability that has yet been recognized.

As mentioned above, sequenceable Abelian groups have been
characterized [5]. But the sequencing question for non-Abelian groups
has hardly been budged. Keedwell [7] reports that there are 9 known
sequenceable non-Abelian groups and apparently in 7 of these cases, the
results were determined by computer. Recently [2] other non-Abelian
groups have been shown sequenceable. In this paper known sequencings
and Gordon’s original argument are used to construct infinite families of
sequenceable non-Abelian groups of even order.

The sequencings we construct have the following property.

DEerFINITION 1. Suppose G is a group of order 2n with identity e
and unique element g* of order 2. A sequencing e, a,, " -, @, * * *, G, Will
be called a symmetric sequencing iff a,.,,=g* and for 1=i=n-1,
Apirei = (an+l-—i)_l'

If g * is the unique element of order 2 in G, then g * is in the center of
G. Thus, symmetric sequencings

. -1 ~1
S:eas -, anAui, a0, a5

17
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have the associated partial product sequence
P: e’ b27 Tt bm bng*a bn-lg*7 Y blg*7 g*'

DEFINITION 2. Suppose G is a group of order 2n with identity e
and unique element g* of order 2. Then E = {{x,, y.}, * - -, {Xu-1, Yya-i}} is 2
left (right) even starter for G iff

(i) every nonidentity element of G except one, denoted m, occurs
as an element of some pair of E,

(i) every nonidentity element of G except g* occurs in

(x;'vyyi'xilsisn-1{xy L yx it 1lsisn—1)).

If G is Abelian, there is no distinction between left and right even
starters. Even starters are a modification of the starter concept that has
proven so useful in the construction of Room Squares [9] and perfect
1-factorizations [1, 3]. Preliminary computer testing by the author and D.
Morse indicates that even starters are more likely to generate perfect
1-factorizations than are starters. Thus the study of even starters should
be of interest. But whereas it is easy to see that one always has the
so-called patterned starter for groups of odd order, it does not appear to
be trivial to show that all finite groups with a unique element of order 2
have an even starter. It turns out that such a group has a symmetric
sequencing if and only if it has an even starter with an additional
property. Thus, we can think of even starters as a kind of generalized
sequencing. In order to see these results, we need to outline the
construction of Gordon [5].

Suppose G is sequenceable Abelian of order 2n. Then G = A X B
where A is cyclic of order 2% k >0 and B has odd order. G has a basis

Cos C1,°**, Cw Where ¢, has order 2* and the orders §,,6,,- -, 8, of
€1, €, " 7, Cn are odd positive integers such that 0 < i < m implies §, | §,...
If j is any positive integer, then there exist unique integers jo, 1, * * *, jm
such that

j Ej() (mOd 8x5z vt 6,,,) and
(1) jO:jl +j261 +j38182+ te +jm61 -+ 6,-1, where
O§j1<61, 0§j2<827.“30§jm<8m-

The sequence of partial products P is defined as follows.
If i=2j+1, 0=j<n, then by, =cocici - c)m

(2) If 1= 2] +2’ Oé] < n, then b2]+2 — C{)+1C]1,+1C,22+1 e C,,:-H.
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The sequencing S is defined as follows.

If i=2j+2, 0=j<n, then a =blb=cl"ch -l

3) If i=2j+1, 0=j<n and s=min{r:j#0}, then a =bilb

a2 =221 L . =21 s _ — a2
= Cole e ¢t M jo=0, a =ci”.

2. Even starters and symmetric sequencings. We first
show that the sequencings of Gordon are symmetric.

THEOREM 1. Suppose G is a sequenceable Abelian group of order
2n. The sequencing a,, a,, - * *, a,, described in (3) is a symmetric sequenc -
ing of G.

Proof. Suppose a,a, = e. Since ¢, has order 2%, k >0, it is clear from
(3) that either i and k are both even or i and k are both odd. Suppose
i=2j+1and k =21/+1, 0=j, | <n. By Definition 1, it will suffice to
show that i + k €{2,2n +2}. Clearly j,=0 iff [,=0. We use the argu-
ment of Gordon on the case j, # 0 # I,. By (3)

— 22 p 211 =21
a, = Cy ]Cs ,SCS+JIS+1 “ o lem

and

21 =21, =21, ,~1 -2, -1
CO C{ tct+1l+1 . cm .

ax
Now each §; is odd so that we must have s =t Hence

2(j + 1)=0 (mod 2*)

and Thus
Jjs + 1, =0 (mod 8,) st =26
js+1 +l.,+1=0 (mOd 5s+1) js+l + Lo+ 1=06.
ju+ 1, +1=0(mod 8,). L 1= 5,

If we multiply the &,.; equation by 8, - - 8,.,-; and add, then by (1) we
have jo+1l=68,-+8, Thus j+I=0(modés,---5,) and 2(j +1)=
0 (mod 2n). The restrictions on j and ! allow us to conclude that either
2+ 1)=0 in which case a;,=a, =e or 2(j +1)=2n which implies
jtIl=n and i+ k =2n +2. The case where both i and k are even is
similar.

We need some additional notation before the statement of the next
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theorem. If E is an even starter for G, let E*=E U{e,m} and let
Q* = {{x, xg*}: x € G}. If we think of the elements of G as labelling the
complete graph K, then it is clear that E* and Q* are disjoint 1-factors
of K,y when m# g* and we may consider the 2-factor union of E* and
Q*.

THEOREM 2. The group G has a symmetric sequencing iff G has a
left even starter E such that E* U Q* is a Hamiltonian circuit of K.

Proof. Suppose |G|=2n and G has a symmetric sequencing with
partial product sequence by, by, - - -, b,,. Let

E = {{sz+z> byjy}: 0= < g— 1}
U {{bznmﬂ), bZ"*ZI}: 0 =j= %1 B 1} .

Thus m is b, if n iseven and b,., otherwise. We must show that E is a left
even starter for G. For 0=j<n/2—1, (by.2) 'byjin = Arjenyn = G,
where 3=p<n+1 and p odd. On the other hand 0=j=n/2-1
implies (b2,-,+1)) 'ban—y = @2ns; = a, Where n + 2= g =2n and q is even.
Since we have a symmetric sequencing it is clear that the a,’s and a,’s
give us a set C of n — 1 distinct elements of G\{e, g*}. Furthermore, it is
certainly impossible to get 2n + 2 as the sum of two p’s, two q’s or a p
anda q. Thusno element of C is the inverse of itself or another element
of C and E 1is a left even starter for G. Note that since g* = b,,, g* # m.
In each of the two cases n even and n odd it is easy to see that E*U Q*
is a Hamiltonian circuit of K.

Conversely suppose G has a left even starter E such that EX*U Q*
is a Hamiltonian circuit of K. The circuit allows us to order the
elements of G by picking a starting vertex and direction around the
circuit. Recall that {e, m} is a pair of E*. We start at e and proceed
around the circuit in the m direction. For notational purposes we now
use h, to denote m. Thus the Hamiltonian circuit is

H: e7 hh hlg*) hz, h]g*’ h37 th*7 T hn~17 hnf]g*y hn = g*

Remember that E*={e, h}U{{hg* h.}:1=i=<n—-1}. We use the
sequence H to construct the sequence P of partial products. Again we
have the two cases n even and n odd. In both cases we start h, = m in
the middle (at b, or b,.,) and work to the ends of P alternating from side
to side. For example, if n is even, then

Peven: e? hn—h hn—zg*, Y h37 hzg*, hl, hlg*7 h27 h3g*, Y hnflg*, hm
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Note that b, = h,=m and b,, = h, = g*. If n is odd, then
Podd: ea hn~17 hn—Zg*) T h4, h3g *, h2> hlg*’ hl’ h28*5 h}a h4g *, Y hn—lg *, hn-

Note that b,.,= h, and b,, = h,. In each case it is clear that a,., = g*.
Furthermore in each case it is clear that for 1=i=n-1, a,.... =
hhg* and a,...; = (au+;-;)"". Finally a,.,_; is a difference associated
with the starter pair {h,g*, h..,} so that the sequence a,, - - -, a,, includes
every element of G and is a symmetric sequencing.

THEOREM 3. If G is a group with order 2n and E is a left even starter
for G, then E induces a 1-factorization #(E) on K,, ...

Proof. Label the vertices of K,,., with the elements of G and two
ideal elements ©, and »,. Let g*, m and e have their usual meanings.
Note that here, g* and m can be the same. Extend the group operation
by defining for every g in G:

gr-oy=0w-g=00 and g-0,=0, g =00,
Suppose

E*=E U{e,®,} U{m,,}
and :

Q”={{g,g*g}: g € G} U{,,;}.

Let #(E)={gE”: g € G} U Q. It is obvious that each element of ¥(E)
is a 1-factor of K,,.,. Since | F(E)|=2n +1 it will suffice to show that
every edge of K,,., occurs in some element of #(E). It is clear that all
{g, .} and {g, »,} belong to 1-factors in ¥(E) and {»,,»,} € Q*. Thus,
suppose {g, h} is a pair of distinct elements of G. If g7'h = g*, then
h=gg*=g*g and{g,h} € Q*. If g7'h # g* then there is a pair {x,y} €
E such that g7'h = x7'y. Thus gx™' = hy ' so that if k is this common
element, k -{x,y}={g, h} € kE* and the result follows.

A group G may have even starters but have no even starter E such
that E*U Q* is a Hamiltonian circuit. For example consider the
quaternion group Q; with generators a and b and defining relations
a*=e, b’=a*> and ba=a’h. One may verify that E=
{{a, ab},{a’b, a’b},{a’ b}} is both a left and right even starter for
Q;. Note that here g* = a®>= m so that E* U Q* is not a Hamiltonian
circuit. It has been computer verified [4] that Q; has no sequencing
whatsoever. Thus it certainly has no symmetric sequencing and no even
starter E such that E* U Q * is a Hamiltonian circuit. Actually it is quite
easy to prove algebraically that Q; does not have a symmetric sequenc-
ing. For, suppose S: e, a,, as, a,, g*, a;', a3, a;' is a symmetric sequenc-
ing of Q;. Now Q;/(a’)=Z,X Z,. Let the members of Z,X Z, be
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designated by e, 1,2,3. Then each nonidentity element of Z,X Z, is its
own inverse and the product of any two nonidentity elements is the third.
The sequence S must induce a sequence T on Z, X Z, such that every
element of Z,X Z, occurs exactly twice in T and its associated partial
product sequence P. Clearly S forces T to be of the form

T:1,x,y,2,1,2,y,x.
But then the associated partial product sequence is
P:1,x,2,1,1,z,x,1

and Q; has no symmetric sequencing.

It seems possible that symmetric sequencings could be used to
construct families of Howell Designs of type H(Zm —2,2m). For exam-
ple consider the cyclic group Z,,. The symmetric sequencing

$:0,4,8,1,3,5,7,9,2,6
induces the partial product sequence
P:0,4,2,3,6,1,8,7,9,5.

The associated even starter is E = {{4, 2}, {3, 6}, {8, 7}, {9, 5}}. Note that the
sums of the pairs of E are 6,9,5,4. The sums are distinct and no sum is
2-m =2-1. Thus, it follows from [6] that — 6, —9, —5, —4, —2,0 when
applied to the {4,2},{3, 6},{8,7},{9,5},1,0 in order give a starter-adder
construction of an H(10,12). Thus, we arrive at the following.

DEerINITION 3. Suppose G is an Abelian group of order 2n and § is
a symmetric sequencing of G. § is strong if and only if in the associated
partial product sequence P

(i) 1=i<j=n-1implies bb., # bb,.,
and

(i) 1=i=n—-1 implies e# bb,., # m>.

As noted above, a strong symmetric sequencing of an Abelian group
of order 2m — 2 will induce a Howell Design of type H(2m —2,2m).

ProBLEM. Find general constructions of strong symmetric sequenc-
ings.

Note that from (2) it follows easily that the sequencings of Gordon
are not strong for n = 4 since for those sequencings 0 = j < n implies that
b2j+1 : bz,+z = CoCr° "t Cpye
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We conclude the paper by generalizing the theorem of Gordon to
include non-Abelian groups of arbitrarily large even order. Let Z, denote
the group of order 2.

THEOREM 4. If G is a sequenceable group of odd order n, then
G X Z, has a symmetric sequencing.

Proof. By hypothesis, G has a sequencing e, x,, - - -, x,. G\{e} can
be partitioned into 2-element subsets such that each subset consists of an
element and its inverse. Choose one element from each 2-element subset.
If x; is a chosen element, then associate (x, 1) with x, and if x; is not a
chosen element, associate (x,0) with x,. This leads to the string

)’1, )’2, Y Yn = (e7 O)a (x27 i2)7 Tt (xm lﬂ)

of elements of G X Z,. We extend this to a symmetric sequencing of
G X Z, as follows. Define y,.,=g*=(e,1) and for 1=j=n-1, let
Voriej = Vari) ™ = (Xndipy 0 It is clear that the string
Yi, Y2, " " % Yur * * %5 Y2u INcludes all elements of G X Z,. Since y,., = (e, 1) is
certainly in the center of G X Z,, it is easy to see that the partial products
also include all elements of G X Z,.

Note that by [7] there are at least 5 known sequenceable non-
Abelian groups of odd order.

THEOREM 5. Suppose the group G has a symmetric sequencing and
B is an Abelian group such that gcd(|G|,|B|)=1. Then G X B has a
symmetric sequencing.

Proof. Theideaisto replace the cyclic group A of order 2", h >0 in
[5] with G and use the arguments of Gordon and Theorem 1. G has
order 2n. Let Sg: x1, x5, * - -, X5, be a symmetric sequencing of G with
associated partial product sequence Pg: yi, y2,***, ¥2.. Now B has odd
order k. We wish to define a symmetric sequencing S: a,, a, * - *, dy Of
G X B. We first define the partial product sequence P: by, by, - - -, by
In the following we use the complete residue system
1,2,3,--+,2n mod 2n. As before B has a basis ¢, - -, ¢,, such that the
orders &;, - * , 8,, are odd positive integers with 0 < i < m implying 8, | §,.
so that (1) still holds.

If l = 2] + 1, O é] < nk, then b2]+1 (yl(mod 2n)y C1 te C;,,j"').

If i=2j+2, 0=j<nk, then by =/(Y.maznyci™ - k™).
The b,’s must be shown to be distinct. Suppose b, = b, where s =2u + 1
and t=2v+1, 0=u, v <nk. Then clearly 2u =2v (mod 2n) so that
u=v(modn). As in the proof of Theorem 1, u =v (mod k). Since

ged(n, k)= 1, we have u = v (mod nk) and thus u = v. A similar argu-
ment suffices if s=2u+2 and t=2v+2, 0=u, v <nk. Finally, if
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s=2u+1 and t =2v + 2, then the first coordinates of b, and b, must be
different.
The sequence S is now defined as follows.

If i=2j+42, 0=j<nk, then a = b1, = (X (tnoazn), €7+ - C™).
If i=2j+1, 0=j<nk and s = min{r: j,# 0}, then a = b}\b

— 2= 2sa 11 ~2/,, 1 - -
- (xz(mod2n)7 Cs e ™ le ) If ]0 - Os a, (xl(mod2n)> e)'

s+1

We may verify that the a,’s are distinct in the same way that the b,’s were
shown distinct. Thus G X B has a sequencing.

The indicated sequencing is in fact symmetric. Suppose a,a, = e. The
symmetric sequencing of G shows that either p and q are both even or p
and g are both odd. The argument now proceeds as in Theorem 1.

It would be nice if the results above could be used to find
sequencings of more non-Abelian groups of odd order. For example, it is
known that the non-Abelian group N,, of order 21 is sequenceable. Thus
by Theorems 4 and 5, N, X Z, and (N, X Z,)X Zs; have symmetric
sequencings. One might hope that the symmetric sequencings of (N, X
Z,) % Zs would ““cut back” to a sequencing of N,, X Zs, but this is not the
case in general.

Added in Proof. R. Friedlander in a paper to appear in Ae-
quationes Math. has shown that if p is a prime, p =1 (mod 4), then the
dihedral group D, is sequenceable.
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