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Banach spaces of class & were introduced by Fleming and
Jamison. This broad class includes all Banach spaces having
hyperorthogonal Schauder bases and, in particular, & includes
all Orlicz spaces L® on an atomic measure space such that the
characteristic functions of the atoms form a basis for L®. The
main theorem gives the structure of one parameter strongly
continuous (or (C,)) groups of isometries on Banach spaces of
class &. Other results correct and complement the work of
Goldstein on groups of isometries on Orlicz spaces over atomic
measure spaces.

1. In [4, p. 390] the following theorem was stated.

THEOREM 1. Let X = L*(Q,3, u) be an Orlicz space on an atomic
measure space. Let T = {T" |t € R = (— », )} be a (C,) group of isometries
on X with infinitesimal generator A, and suppose (*) and (*x) hold.'
Suppose X is not a Hilbert space, i.e. ®(s) is not of the form P(s)=
const X s

(I) If X is a real space, then T' = I for each t ER.

(I1) If X is a complex space, then there exists a function g: 1 —R
such that (T'f)(w) = exp{itg(w)} f(w) for each f € X and each w € ().

The idea of the proof in [4] is as follows. Write (} = {w;} and view A
as a matrix whose ij entry is A (8(w;))(w;), where 8(w;) is the function
which is 1 at w; and 0 everywhere else. A is a diagonal matrix if and
only if T satisfies (I) or (II). It was assumed that A was not diagonal,
and the proof given in [4] established the existence of a 7, 0 < 7 = «, such
that

®(s)=constX s> for 0=s<r.

It was asserted in [4] that 7 = «, which means that X is a Hilbert space.
But in fact this is not correct as the following example shows.

' (%) and (*+) are mild technical conditions on ® and A. (Cf. [1, p. 389] for the precise
statement.) X cannot be an infinite dimensional L~ space, but otherwise (*) and (**) are not very
restrictive.
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ExaMpPLE 1. Let (€, 3, u) be an atomic measure space defined as
follows. Q consists of three points w,, w,, w3, and u(w,) = p(w;)=1/2,
w(ws;) = 1/200. Let @ and ¥ be defined as follows:

532, s €0, 4]
O(s) = {
(s°+32)/12, s € [4,),

s3/2, s € [0, 4]
Y(s) = [
(4s**—8)/3, s €[4, ).

Since @' and W' are continuous and ®(1) + W(1) = 1, all the conditions of
[4] are satisfied. If we define

flw), ©=w
(Hf)(w) = f(wl)7 W = W,
2f(ws3), ® = ws,

then H is an Hermitian operator (in the sense of Lumer [5]) and
{e™ |t € R} is a strongly continuous group of isometries on the complex
space L®(Q),2, u). A little computation yields

cost ¢ isint 0
e = (i sin ¢ cos ¢ 0 )’
0 O eer

where the matrix is given relative to the basis {§(w,)} -, consisting of the
characteristic functions of the atoms. This group of isometries is clearly
not of the form described in Theorem 1.

The correct version of the theorem is

THEOREM 2. Let X = L*(Q, 2, u) be an Orlicz space on an atomic
measure space. Let T = {T"|t € R} be a (C,) group of isometries on X with
generator A, and suppose (*) and (**) hold. Then either there exists a T,
0<7=0, such that ®(s)=cs’> for 0=s<rt, where ¢ is a positive
constant, or else:

(I) If X is a real space, T' = I for each t € R.

(I1) If X is a complex space, there exists a function g: 21— R such
that (T'f)(w) = explitg(w )}f(w) for each f € X and each o € Q.

REMARK 1. Let T on X be not of the form (I) or (II). Then the =
constructed in the proof of Theorem 1 [4, p. 391] is
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r = sup ®(| f(@) |/ fll)

the supremum being over the set of all functions f = «a,8(w,) + a,8(w,)
where a,, @, are nonzero scalars, §(w;) is as before the characteristic
function of w,, and w,, w, are distinct members of ) such that A (6(w,))
does not vanish at w,. The existence of such a pair w,, w, follows from
the fact that A is not a diagonal matrix since T is not of the form (I) or

().

ReEMARK 2. Theorem 2 does not single out Hilbert space among
the Orlicz spaces, as asserted in [4], but it does single out Hilbert spaces
among a class of Orlicz spaces including the Lebesgue L? spaces (over
atomic measure spaces).

The results of §4 of [4] which were asserted to be consequences of
Theorem 1 are in fact consequences of Theorem 2, so they are correct as
stated.

REMARK 3. Observe that the space in Example 1 can be written as
a direct sum L*(Q, 2, n)= X, + X, where X, ={f|f(w;)=0} and X, =
{f|f(w))=0fori=1,2}. Also note that the operators in the group can be

written as
I 0
T[ } ( ) ’
0 T3

where {T}|t ER} is a (C,) group of isometries on X, j = 1,2. Further-
more, X, X, are two dimensional and one dimensional Hilbert spaces
respectively.

It will follow from Example 5 and Theorem 3 below that any
counterexample to Theorem 1 is essentially of the same nature as is
Example 1.

2. We now consider a class of spaces which includes the Orlicz
spaces L®(), %, u) on atomic measure spaces, and we characterize the
(Co) groups of isometries on spaces of this class.

DEerFINITION. A Banach space (X, v) is said to be a member of class
& if there exists a Banach space of sequences (E, u) with absolute norm
such that (i) (E, u ) possesses a sufficiently [?-like semi inner product; (ii)
there exists a sequence {X,} of (not necessarily separable) Hilbert spaces
such that given x € X there exists a unique sequence {x;} (x, € X)) for
which x =27, x, if {X/} is a finite sequence or x = lim,_. 2/, x, in the
infinite case; (iii) if x = 2x, € X, then (||x,||) € E and v(x) = p[(| x.|)]- In
this case we write X ={X,{X.}, E, u}.
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The exact meaning of a sufficiently [”-like semi inner product will
not be used explicitly in what follows and therefore will not be given. (See
[2] for the definition.) Rather, we will give several examples of spaces of
class . As the examples will show, the class & is quite broad. In fact,
& contains all Banach spaces which have hyperorthogonal Schauder
bases [2].

ExampLE 2. Let 1=p <o and let {X,} be a sequence of (not
necessarily separable) Hilbert spaces. Let [7(X))={(x.)|x. € X,
3| x. [P <} and let v[(x:)] = (| x [)"*. This space is a member of class
¥ and the associated sequence space (E, n) is just (I%,]|-],). Since the
{X;} can all be one dimensional, [? € .

ExampLE 3. Let 1=p <. The Lorentz sequence spaces d(a, p)
{1] are members of class . They are defined as follows: For any
a=(a)ec\l',a,za,Za,=z--->0,

d(@p) = ()€ i sup 3 [xoba <=

ocET 1=1

where 7 is the set of all permutations of the natural numbers. The linear
space d(a,p) becomes a Banach space if endowed with the norm
(x) = [sup,e, == | X, [Pa;]"". For this space it can be shown that all of
the X, are just the one dimensional spaces spanned by the basis elements
e, and (E,u)=(d(a,p), v).

ExampLE 4. Let (p,) denote a sequence of real numbers with
I<b=p =c<=foralli Ifx=(x)isa sequence of complex num-
bers, let M(x) =27, |x, |*/p. Now let I(p,) = {(x;)| M(Ax) <= for some
A >0} and define v(x) = inf{1/e | M(ex) = 1}. Under these hypotheses the
space is a uniformly convex Banach space [7] and is a member of class
&. It can be shown that in this case all of the X,’s are one dimensional
except possibly one which is the span{e, |p, = 2}, where e, denotes the
element which is 1 in the ith coordinate and zero otherwise. The
associated sequence space (E, u) is [(p,) where p, =2 for at most one i
and p, = p, for p,# 2.

ExaMPLE 5. Let (2,%, n) be a purely atomic measure space and
let L*(€2, %, u) be an Orlicz space over it. If the characteristic functions
of the atoms form a basis for L*(Q),2, u), then L*(Q, 3, n) € &. In this
case, the X,’s are all one dimensional except possibly one. This can occur
whenever ®(s)=cs* for s €[0,7], and in this case it is given by
span{8(w:)| 7 = (ci (w,))*}, where 8(w,) is the characteristic function of
the atom o,.
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The proof of the main theorem (Theorem 3 below) will be based on
the structure of isometries of spaces in class &. Every bounded linear
operator A on X € ¥ can be represented by an operator matrix (A;)
where A,: X; — X. In [3] it was shown that every isometry U of X onto
X can be represented as (U,,(,) where UX,, = X,, U..(; is unitary, and 7
is a permutation of the positive integers (or of {1,2,3, -+, n} in the case
there are only finitely many of the X,’s).

ExampLE 6. If X =I(p,) and the p,’s are distinct then U is an
isometry of X onto X if and only if there exists a sequence of real
numbers {6,} such that (Ux)(x) = e*x (k) for each . In this case only
the identity permutation is allowed. If 1<p =p <o, p#2, then
(Ux)(x)=e™x(m(x)) where = is any permutation of the positive
integers.

We are now in a position to state and prove the main result.

THEOREM 3. Let X = (X, {X.}, E,p)E Y. U={U"'|[t ER}isa (Cy)
group of isometries on X if and only if (i) for each t € R, U" has a diagonal
operator matrix (U.,), and (ii) for each k, {U.} is a (C,) group of
isometries acting on the Hilbert subspace X..

Proof. (Necessity) For each t €R, U’ is an isometry. Hence by
Theorem 1 of [3], there is a permutation 7, such that

(1) U'X..,= X, for each positive integer |,
() (Ux)(i)=U,,,x(m(@i)) foreach i,
where x =2x, € X and U,,,, is a unitary map of X, onto X.

Since U ={U'|tER} is a group we have U'U*= U** for all
s,t ER. Let s,t be fixed and x € X. Then

(UUx)(i) = Uiy Uriym mwx(m - m(i))
and
(Ux) (@) = Ul wx (e (1).
Hence for every x € X we must have
3) Ulrsty Usniymemin X (10 (0)) = U X (54 (i)

Let i be given and suppose m,.,(i)=j. Let x, denote a fixed nonzero
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element of the subspace X;. Let x(j)= x, x(x) =0, « # j. Then with this
x we see that the right hand side of (3) is not zero. If =, - m.(i) # j the
left hand side of (3) is zero. Hence m, - w,(i) = m,,,(i) and since i was
arbitrary,

4) T M W

We now proceed to show that o, = identity for each . We use the
strong continuity of the group at zero. For each x € X,

%) Ux—x as t—0.

Let i =1 and let x, be a nonzero element of X,. Set x(i)=x,ifi=1,
x(i)=0if i# 1. Then from (5), there exists a neighborhood V,of t =0
such that v(U'x — x) <||x,| for t € V.. Now

0, m(i)#1
(Ux)(i) = Ul x(m(i)) = {
Uix,, m(i)=1.

Consequently, v(U'x — x)Z|x,[|= v(x) if w,(1)#1, for in this case,
Ux —x=x,+U\x,. Thus 7, (1)=1 for all t € V,. In the same way, for
given N, there exists a neighborhood Vy of ¢ = 0 such that m, (k)= « for
all k = N and all t € V. Now if t, € R, there exists a positive integer n
such that t/n € V,. Therefore, m,.(x)=« for all Kk =N and by (4)
T = Tniimy = [Twna]™ So that 7, (k)= « for all k = N. Since N was
arbitrary we conclude that =, = identity permutation for each ¢t € R.

This establishes that the operator matrix for U is diagonal for each
t. If follows from (3) that for each i

(6) U;Uix(i)=Ui"x(i)

for all s, + € R and we have that each diagonal element is a member of a
group of isometries acting on the corresponding Hilbert subspace. The
continuity property of the diagonal element follows from the continuity
of U
For the converse, the only difficulty is in showing the continuity.
Let x € X and € >0 be given. Recall that x =X x, and v(x)=
wl(lx, D] = w[(lx: 2], - - - )]- Hence there exists an N such that

“[(0707 o ':0’”xN+1”’”xN+2”> v )] <e/4.

Now
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v(U'x —x)=p[(|Uix (@) — x(D)])]
(7 =u[(JULx) = x|, - | Uwx(NY= x(N)|, 0,0, - - )]
+1[0,0,- 0, Unuinr x (N + 1) = x (N + D], - ).

But | UL x(x)— x(x)|| = 2||x(x)| for all ¢ € R and every positive integer
k. Then from (7)

(U =)= p[(|ULx (D)= x(D], - - [ Utwx (N) = x(N)], 0,0, - - )]
® +20[(0,0,0,- -, [x(N + D), --)].

Choose V such that t € V implies || Uix (i)~ x(i)|| < €/4M where M =
wl(1,---,1,0,0,---)], exactly N 1’s occurring inside the parentheses.
Then v(U'x —x)<e€ for all t € V. The proof is complete.

ReMARK 4. If the Hilbert subspaces X, are all one dimensional,
then there exists a function g:Z*—R such that U'x(x)=
exp{itg («)tx(k) for each x € X and « €EZ".

ReEMARK 5. If Theorem 3 is applied to the Orlicz space of Example
1 we find that every (C,) group of isometries on that space can be written
as U' = [ 0“ L?‘ ] where {U|t € R} is a (C,) group of isometries on X,
i=1,2 respectivély.

REMARK 6. Theorem 3 indirectly characterizes self conjugate
operators (in the sense of Palmer [6]) on spaces of class . For example
if X = [(p,), the self conjugate operators correspond to multiplications by
real sequences. The bounded self conjugate operators are just the
Hermitian operators and correspond to multiplication by bounded
sequences.
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