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The span of a metric space is the least upper bound of
numbers a such that, roughly speaking, two points can move
over the same portion of the space keeping a distance at least a
from each other. The surjective span is obtained if it is required
that, in addition, the whole space be covered by each of the
moving points. These geometric ideas turn out to be important in
continua theory. In the present paper, a simple triod is con-
structed such that the span of it is strictly greater than the
surjective span.

Let X be a connected metric nonempty space. By px and p2 we

denote the standard projections of the product Xx X onto X, that is,

P](x, JC') = X and p2(x,x') = x' for (x, J C ' ) E X X X . The surjective span

σ*(X) [resp., the surjective semispan σ*(X)] of X is defined to be the
least upper bound of the set of real numbers a with the following
property: there exist connected sets Ca CX x X such that a ^ dist(x, xf)
for (x,x')ECa and p,(Cα) = p2(Ca) = X [resp., p,(Cβ) = X]. The span
σ(X) and the semispan <xo(X) of X are defined by the formulae:

(1) o-(X) = Sup{σ-*(A):0^A CX, A connected},

(2) σo(X) = Sup{σS(Λ): 0 ^ Λ CX, A connected}.

It follows directly from the definitions that the following inequalities
hold:

(3) 0 ̂  σ* (X) ^ σ(X) ^ σo(X) ^ diam X,

(4) 0 ̂  σ*(X) ^ σΐ(X) ^ σo(X) ^ diam X,

(5) σ(A) ^ σ(X), σo(A) ^ σo(X) (A C X).

It is not difficult to check that the above definition of the span,
formula (1), is equivalent to the definition given in [5]. Continua of
surjective span zero were defined in [10]. For each arc, as well as for
each arc-like continuum, all these four quantities are equal to zero (cf.
[8], Propositions 1.3 and 2.1). Nevertheless, they are quite useful in the
theory of tree-like continua (see [2], [3], [6], [7] and [8]). From this
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208 A. LELEK

view-point, the relationship between different kinds of span of a tree-like
continuum seems to be of some importance. There is an easy example
of a continuum X such that σ(X)= σo(X)= 1 and σ*(X) = σ%{X) = \
(see [8], Example 1.4). Its existence shows, among other things, that the
analogues of inequalities (5) for surjective span and surjective semispan
instead of span and semispan, respectively, do not hold. The example
from [8], however, is not a tree-like continuum: it contains a simple
closed curve. It is the aim of the present paper to describe an example
of a tree-like continuum with the same span properties. Moreover, our
example belongs topologically to the simplest, besides arcs, class of
tree-like continua, namely, that of simple triods. By a simple triod we
understand the union of three arcs having a common end-point and
mutually disjoint except at that point.

EXAMPLE. There exists a simple triod X in the 3-space such that
σ(X) = σo(X) = 1 and σ*(X) = σ%{X) = §.

Proof. The 3-space R3 metrized by the ordinary Pythagorean
distance will be used. Given two points x ,y6ί? 3 ,we denote by xy the
straight-line segment with end-points x and y. Setting

(\ 2τri 1 . 2πi Λ ( 2π(i +1) . 2π(i +1) Λ(6)qt = (^cos^,^sin-y-,0j, r, = (cos — ^ ι , sin — ^ L, 0

and

(1 ΊΊT Π Λ /I 7π 1 . 7π A
So = (^ cos -J2 , 0, 0 I , 52 = (^ c o s ^2"' ~ 2 s m "Ϊ2 ' / '

/A n 1\ /I 7TΓ 1 . 7π Λ

s2 = \0, 0, ^J , 53 = ̂  c o s Y2 ' 2 S m 12 ' / '

we get ten points g(, r,, 5, E i?3. Let o = (0,0,0) be the origin. We take the
polygonal arcs:

50 = or2 U r2s2 U s2s0 U s o qi U ^ i ^ 2 ,

51 =~osΊ U s v π ,

5 2 = "αs~3 U ^ 3 ,

and we define X to be the union

X = SoUS.U S2.
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Clearly, X is a simple triod in R3 (Fig. 1).

FIGURE 1

Let Ao = W2 and A, = S, for i = 1,2. The set T = Ao U Aj U A2 is
also a simple triod. Its width (cf. [1] and [7]) is given by the formula1

w(T) = Min{Max{p(x, A(+1 U Aί+2): x E A,}: i = 0,1,2},

where the subscripts of A, are taken mod 3 (see [7], Proposition 2.4).
Moreover, we have

Max{p(x, Al+1 U Aί+2): x E A,} = 1 (ΐ = 0,1,2),

whence w(T) = 1. It is known (see [9], p. 210) that w(T)^σ(T). Since
TCX, we get σ(T)^σ(X) , by (5). Thus l g σ ( X ) . We claim that
σ o (X)^l . If σ o (X)>l, there would exist, by (2), a connected
nonempty set ACX such that σ £ ( A ) > l . Hence there would be a
connected set d C X x X such that l<dist(x, x') for (x, x ' ) G d and
P\{Cλ) = A. By (6) and (7), each of the ten points qn rt and s, belongs to
the sphere of radius 1 and center at the origin. Consequently, the set X is
contained in this sphere, too, and therefore dist(o, x') ^ 1 for x' E X. It
follows that the origin o cannot be a point of Pi(C\), whence o?z A, i.e.,
A CX\{o}. The point o cuts the simple triod X into the three compo-
nents S,\{o} (i = 0,1,2). Since A is a connected set, there has to be a

Here ρ(x, A) denotes the greatest lower bound of distances between the point x and all points

of A.
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subscript / =0,1,2 such that A CSy\{o}. But then A CS, and
σ*(A) > 1, by (2). This, however, is impossible because 57 is an arc (see
[8], Proposition 1.3). As a result, we obtain σ o (X)^l , and σ(X) =
σ o (X)=l, by (3).

The width of the simple triod X, i.e.,

w(X) = Min{Max{p(x,SI+1USt+2): JC ES,}: i =0,1,2}

is less than the width of the simple triod T contained in X. Indeed, it is
not difficult to check (cf. Fig. 1) that

(I i = 0 ,
Max{p(x, Sι+ι U Sι+2): x E 5,} = U i = 1,

U i = 2,

where, again, the subscripts are taken mod 3. Consequently, w{X) = \.
We have w(X)^ σ*(X) (see [9], p. 210)2. To complete the proof of all
the properties of the example, it is now sufficient, by (4), to prove that

Suppose, on the contrary, that σ%{X) >\. Then there exist a number
αo>2 and a connected set C ^ C X x X such that αo = dist(jc,x') for
(JC, x')GCβo and pι(Ca) = X. The closure C of C«o in X x X is a
continuum, and we also have a0 ̂  dist(JC, X') for (JC, JC') E C and pi(C) =
X. The existence of such a continuum C will lead to a contradiction in
each of a number of cases considered below. Before listing them, we need
to establish some geometric properties of the polygonal arcs which form
the simple triod X

The arcs

Bo = M i U qxq2, Bλ = s0s2 U s2r2,

and B = B0U B} are subarcs of the arc So. By (6) and (7), the points ql9

q2 and sQ belong to the sphere of radius \ and center at the origin. Thus

(8)

Let /: X-> R3 be the projection of X onto the ί-axis (Fig. 1). By (7),
any plane containing a point of the segment s0s2 and perpendicular to the
ί-axis meets the simple triod X in a set contained in the sphere of radius \
and center at the origin (Fig. 2). Consequently, the diameter of the set
f~ιf(x) does not exceed \ for x E ~s^s2. If x E I2J2, the point /(JC) is a point

2 The lemma in [9] states that w(X)^ σ(X), but its proof actually provides an estimate of the
surjective span rather than the span. Hence w(X)^σ*(X) for each simple triod X.
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of orΓhaving a distance not greater than \ from x. No other point of X
projects onto f(x) besides x and f(x) itself. Hence f~xf{x) = {*,/(*)}
for x E s^2, and we get

(9) diam Γ7(x)^ί (xeBO

Now, since the continuum C is mapped onto X by the projection pu

the point q2 belongs to pi(C). The set pϊ1(B)Π C is a closed proper
subset of C which meets p\\q2). There exists a component X of
p ^ B ) Π C containing a point of p~\\qi), so that g 2 ε Pi(ίQ. We observe
that the arc B has a degenerate boundary in X, namely {r2}. The
continuum K meets the boundary of pϊ1(B)f) C in C (see [4], p. 172),
whence p\{K) must contain a point of the boundary of B in X, i.e.,
r2 E Pι(K). The continuum pi(ίQ, however, is a subset of the arc B
whose end-points are q2 and r2. Thus B = Pι(K). We denote g =
P! IK. Hence g: iC —> B is a continuous mapping of X onto B.

The point s0 is a common end-point of the arcs Bo and Bλ whose
union is B. Let % denote the collection of all components of the set
g~ι(Bi) (i =0,1). Each component of g'^B. ) meets the boundary of
g~\Bi) in K (ibidem). Each point of the boundary of g~\Bt) in K is sent
under g into a point of the boundary of JB, in B. The latter boundary is
degenerate, namely it is {s0}. It follows that

(10) g-\s0) ΠZΪ0 (ZG % ; i = 0,1).

The sets M] (j = 0,1), defined by the formulae:

are closed subsets of K and their union is g ^ So)- We denote by 3^ the
subcollection of JCt consisting of all those elements of %x which meet the
set Mj (ί, ; = 0 , l ) .

The remainder of the proof is divided into several cases, each of
them ending with a contradiction. In this way, we shall prove that the
surjective semispan of X is, indeed, less than or equal to \.

Case 1. 3?Όo = 0 . Since q2E B^CB = g(K), the point-inverse
g~\qi) is a nonempty subset of g'ι(B0). Let K' be a component of
g~ (Bo) which meets g~\q2). Then K' E Xo and, by (10), the component
Kr also meets g"1(50) = Mo U M lβ Hence it must meet Mo or Mu that is,
K'^yfoo or KΈ3£0U respectively. But Sίfoo being empty, we obtain
K' E J{Oί. On the other hand, the continuum g(K') is a subset of the arc



212 A. LELEK

Bo whose end-points are q2 and s0. Since both q2 and s0 belong to g(K'),
we have Bo = g(K'). Also qx E £ 0 , SO that qx E g(K'). Let yk E Kf be
points such that g(yk) = qu (k = 1,2). It follows from the inclusions

K ' C K C C C X X X

that g(yfc) = pi(yfc) and

\ < a0 ^ dist [p,(yk), p2(yk)] = dist [qfc, p2(yfc)] (k = 1,2),

where p2(yfc) is a point of the simple triod X. Observe that each point of
the arc S2 has a distance less than or equal to \ from qλ. Similarly, each
point of the arc Si has a distance less than or equal to 2 from q2. Thus
p2(yk) E So U Sk (k = 1,2). As a result, the continuum p2{Kf) meets both
sets So U Si and So U S2 whose union X contains p2(Kf). The continuum
Pi{K') must, therefore, intersect the common part of these two sets which
is equal to So. We conclude Case 1 by proving that the conditions
K'EJ{Ql and p2(K')Π So^0 are incompatible. First, we note that
K' E 3Γoi means K' Γ\Mλy^ 0 , i.e., there is a point y3 E Kf with g(y3) = s0

and /p2(y3) g/p!(y3). Again, g(y3) = pi(y3). The ί-coordinate of p2(y3) is
less than or equal to the ί-coordinate of so; this is what the last inequality
says. The point p2(y3) is, of course, a point of X, and we see (cf. Fig. 1)
that it can be located only on BQ or SΊ U S2; the remaining points of So

have ί-coordinates greater than the ί-coordinate of s0. However, we
also have

\ < a0 ^ dist [pi(y3), p2(y3)] = dist [s0, p2(y3)],

and each point of the arc Bo has a distance less than \ from s0 (cf. Fig. 2).
Hence p2(y3) E S , U S2. If the continuum p2(Kf) intersected So, it would
intersect both So and Sj U S2, so that it would have to intersect the
common part of So and Sj U S2 which is the degenerate set {o}. In such a
situation, there would exist a point y 0 E K' with o = p2(y0), or, which is
the same thing, a point x 0 E X such that (JC0, o)EK'. Then i < α o =
dist(x0,o) and XoEp^K'). Since pλ(K') = g(K')CB0, we would get
xQ E β 0, contradicting (8).

Case 2. 3£u = 0 . Since r2EBλCB = g(K), the point-inverse
g~\r2) is a nonempty subset of g^B^. Let K" be a component of
g^Bx) which meets g~ι(r2). Then K" E 3ί1? and K" also meets g^^o) =
Mo U M„ by (10). Hence K" E ^ o or K" E afn. But Xn being empty,
we obtain K" E 5Γ10, which means that K" Π Mo^0. Consequently, there
is a point z0 E K" with fpι(z0) g /p2(z0). On the other hand, there exists a
point z2 E K" such that g(z2) = r2. Thus z2E K and g(z2) = Pi(^2). The
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ί-coordinate f{r2) of the point r2 is equal to 1, and it is the maximum
ί-coordinate of points belonging to X (cf. Fig. 1). It follows that
fp2(z2) = f(r2) = fpι(z2) The continuum K" then contains two points, z0

and z2, at which the real-valued functions fpλ and fp2 switch the
order. As a result, there exists a point zλ E X" with fpλ{zλ) = fp2{zx). We
denote xλ = pi(zθ and observe that zxE K CC Therefore we have

\ < α 0 g dist [pi(zi), p2(2i)] = dist [xu p2(zι)],

where both points xx and p2{z\) belong to the set f~ιf(xι). Then
§<diam/-7(x,). Since px(K") = g(K")CBu we get x ^ B , , which con-
tradicts (9).

Case 3. %m^<Z)^3ίu. By (10), we see that 3£ = aζ0 U #„
(ί = 0,1). Consequently, the continuum K admits the decomposition3

K = g~\B) = g-^Bo U BO = g-^Bo) U g^B,)

= |3ίfo| u 1^1 =(|3ίfoo| u |3r,o |)u( |ar O i | u | ^ n | ) ,

where both sets \JCm\ U 13CXQ\ and 13ίΓOi I U 135Γn| are nonempty. These two
sets, however, are closed in K (see [4], p. 182). Their common part must
be nonempty, too, and Case 3 splits into four subcases.

Case 3(a). l^ool Π |3Γ0I| ^ 0 . In this case, there exists an element
X* E %o Γl 3ίΓ01. In particular, X* E 3 ^ means K*ΠMoέ0y i.e., there is
a point y* E K* with g(y *) = s0 and fpλ{y *)^/p 2 (y *). Thus y * E ίΓ and
g(y*) = Pi(y*X whence f(so)^fp2(y*). The ί-coordinate of p2(y*) is,
therefore, greater than or equal to the ί-coordinate of so The only
points of the arcs 5i and S2 whose ί-coordinates satisfy this inequality are
those points of the segments osi and αsj, respectively, which belong to the
sphere of radius \ and center at the origin (cf. Fig. 2). The point s0 also
belongs to this sphere, so that its distance to each of those points is less
than or equal to \. On the other hand, it follows from y * E K C C that

\<a^ dist[P ι(y *), p2(y *)] = dist[s0, p2(y *)]

and p2(y *) E X. We conclude that the point p2(y *) cannot be located on
S, or S2. Hence p 2 ( y * ) E S 0 , and thus p2(K*)Π So^0. Also, K * E
3foi It has been proved in Case 1, for K' instead of K*> that the last two
conditions are incompatible.

3 Given a collection % of sets, we denote by \"Jί\ the union of all elements of Jί.
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FIGURE 2

Case 3(b). 13ίflo| Π 13Γn | ^ 0 . In this case, there exists an element
K** E 3ίΓ10 Π aΓπ. In particular, we have K** E Xu whence K**CK and
p1(K**) = g(JK:**)CB1. Being an element of 3T1;, the continuum K**
meets M; (j = 0,1) and, by the definition of the sets Mp it contains two
points at which the functions fpλ and fp2 switch their order. We have
shown in Case 2, for K" in lieu of K**, that this combination of
properties leads to a contradiction.

Case 3(c). |$Όo| Π | ^ n | ^ 0 . Let X, E %» (ί = 0,1) be elements
that intersect, and let c^KQC\Kλ be a point. Then
whence

that is, g(c) = 50. Thus cEg' 1 (s o ) = MoUM1, and c E Mo or
c £ M , . If c E Mo, then KλSJ{λ{) and Case 3(c) reduces "to Case
3(b). If c E Mu then Xo E %i and Case 3(c) reduces to Case 3(a).

Case 3(d). n 0. Let L0E5Γ0i and Lλeπm be ele-
ments that intersect, and let d E Lo Π Li be a point. As in Case 3(c), we
obtain d 6 M 0 U M , . If d E Mo, then Lo E JC^ and Case 3(d) reduces to
Case 3(a). If d E Mu then Li E %n and Case 3(d) reduces to Case 3(b).
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