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A. LELEK

The span of a metric space is the least upper bound of
numbers a such that, roughly speaking, two points can move
over the same portion of the space keeping a distance at least o
from each other. The surjective span is obtained if it is required
that, in addition, the whole space be covered by each of the
moving points. These geometric ideas turn out to be important in
continua theory. In the present paper, a simple triod is con-
structed such that the span of it is strictly greater than the
surjective span.

Let X be a connected metric nonempty space. By p, and p, we
denote the standard projections of the product X X X onto X, that is,
pi(x,x")=x and p,(x,x")=x" for (x,x")€ X X X. The surjective span
o *(X) [resp., the surjective semispan o §(X)] of X is defined to be the
least upper bound of the set of real numbers a with the following
property: there exist connected sets C, C X X X such that a = dist(x, x")
for (x,x")€ C, and p,(C,) = p,(C,)= X [resp., p,(C,)= X]. The span
o(X) and the semispan o,(X) of X are defined by the formulae:

(1) o(X)=Sup{c*(A): J#A CX, A connected},
(2) o4(X)=Sup{o§(A): I# A CX, A connected}.

It follows directly from the definitions that the following inequalities
hold:

3) 0=0*(X) = o(X) = 0(X)=diam X,
4) 0=0*X)=03(X)=oy(X)=diam X,
5) o(A)=o(X), oo(A) = oy(X) (A CX).

It is not difficult to check that the above definition of the span,
formula (1), is equivalent to the definition given in [5]. Continua of
surjective span zero were defined in [10]. For each arc, as well as for
each arc-like continuum, all these four quantities are equal to zero (cf.
{81, Propositions 1.3 and 2.1). Nevertheless, they are quite useful in the
theory of tree-like continua (see [2], [3], [6], [7] and [8]). From this
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view-point, the relationship between different kinds of span of a tree-like
continuum seems to be of some importance. There is an easy example
of a continuum X such that o(X)=0(X)=1 and ¢*(X)=03(X)=1}
(see [8], Example 1.4). Its existence shows, among other things, that the
analogues of inequalities (5) for surjective span and surjective semispan
instead of span and semispan, respectively, do not hold. The example
from [8], however, is not a tree-like continuum: it contains a simple
closed curve. It is the aim of the present paper to describe an example
of a tree-like continuum with the same span properties. Moreover, our
example belongs topologically to the simplest, besides arcs, class of
tree-like continua, namely, that of simple triods. By a simple triod we
understand the union of three arcs having a common end-point and
mutually disjoint except at that point.

ExampLE. There exists a simple triod X in the 3-space such that
o(X)=0y(X)=1and o*(X)=c§(X)=1.

Proof. The 3-space R® metrized by the ordinary Pythagorean
distance will be used. Given two points x, y € R’, we denote by Xy the
straight-line segment with end-points x and y. Setting

6)q: = (%cos%?,%sing—;—r—i,())’ r = <Cos 27T(l3+ 1), i 277(,3+ 1), O)

(i=1,2,3)
and
(L. Tm _ (L 7 1. Tw
S"_<4C0512’0’0)’ s1~<2coslz, 2sm12,0>,
L (0.0} ~ (Leos 2, Ly 22 o)
2 y 74 b 33 2C0512>2 12, s

we get ten points g, 1., s, € R*. Let o = (0,0, 0) be the origin. We take the
polygonal arcs:

SO'—:FrZUEE;U_S;Ts_OUE@:Uﬁ@,
S, =o0s, Usir,
S, =0s; U si1s,

and we define X to be the union

X:SOU51USZ.
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Clearly, X is a simple triod in R’ (Fig. 1).

FIGURE 1

Let A;=or,and A, =S, fori =1,2. Theset T=A,UA,UA,is
also a simple triod. Its width (cf. [1] and [7]) is given by the formula’

w(T)=Min{Max{p(x, A ,UA L) xEA} i=0,12},

where the subscripts of A, are taken mod 3 (see [7], Proposition 2.4).
Moreover, we have

Max{p(x,A . ,UA,): xEA}=1 (i=0,1,2),

whence w(T)=1. Itis known (see [9], p. 210) that w(T) = o(T). Since
TCX, we get o(T)=o0(X), by (5). Thus 1=o0(X). We claim that
oo(X)=1. If oi(X)>1, there would exist, by (2), a connected
nonempty set A CX such that o5(A)>1. Hence there would be a
connected set C;C X X X such that 1 <dist(x, x") for (x,x") € C, and
pi(C))=A. By (6) and (7), each of the ten points q,, r, and s, belongs to
the sphere of radius 1 and center at the origin. Consequently, the set X is
contained in this sphere, too, and therefore dist(o, x')=1forx'€ X. It
follows that the origin o cannot be a point of p,(C,), whence 0o A, i.e.,
A CX\{o}. The point o cuts the simple triod X into the three compo-
nents S,\{o} (i =0,1,2). Since A is a connected set, there has to be a

' Here p(x, A) denotes the greatest lower bound of distances between the point x and all points
of A.
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subscript j =0,1,2 such that A CS,\{o}. But then A CS§; and 0,(S;)=
o3(A)>1,by (2). This, however, is impossible because §, is an arc (see
[8], Proposition 1.3). As a result, we obtain oy(X)=1, and o(X)=
ao(X)=1, by (3).

The width of the simple triod X, i.e.,

w(X)=Min{Max{p(x, S, US..,): x €S} i=0,1,2}

is less than the width of the simple triod T contained in X. Indeed, it is
not difficult to check (cf. Fig. 1) that

1 i=0,
Max{p(x,S,.,,U Si.,): x €ES;} = {% i=1,
: =2,

where, again, the subscripts are taken mod 3. Consequently, w(X) =3
We have w(X) = o*(X) (see [9], p. 210)*. To complete the proof of all
the properties of the example, it is now sufficient, by (4), to prove that
o X)=1

Suppose, on the contrary, that o 5(X) > 3. Then there exist a number
a,>% and a connected set C, CX X X such that «,=dist(x,x") for
(x,x)EC,, and p(C,)=X The closure C of C. in XXX is a
continuum, "and we also have a, = dist (x, x') for (x, x )E C and p,(C) =
X. The existence of such a continuum C will lead to a contradiction in
each of a number of cases considered below. Before listing them, we need
to establish some geometric properties of the polygonal arcs which form
the simple triod X.

The arcs

BOZMUE, Bl=mUﬁ,

and B = B, U B, are subarcs of the arc S,. By (6) and (7), the points g,
g and s, belong to the sphere of radius 1 and center at the origin. Thus

8) dist(o, x) =13 (x € By).

Let f: X — R’ be the projection of X onto the ¢-axis (Fig. 1). By (7),
any plane containing a point of the segment s,s, and perpendicular to the
t-axis meets the simple triod X in a set contained in the sphere of radius }
and center at the origin (Fig. 2). Consequently, the diameter of the set
f'f(x) does not exceed  for x € 5,5,. If x € 5,1, the point f(x) is a point

? The lemma in [9] states that w(X) = o(X), but its proof actually provides an estimate of the
surjective span rather than the span. Hence w(X) = o*(X) for each simple triod X.
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of or; having a distance not greater than ; from x. No other point of X
projects onto f(x) besides x and f(x) itself. Hence f™'f(x)={x, f(x)}
for x € s,r;, and we get

©) diam f'f(x)=4  (x € B).

Now, since the continuum C is mapped onto X by the projection p;,
the point g, belongs to p,(C). The set p;'(B)N C is a closed proper
subset of C which meets p7'(g.). There exists a component K of
pi'(B) N C containing a point of p7'(q.), so that g, € p,(K). We observe
that the arc B has a degenerate boundary in X, namely {r,}. The
continuum K meets the boundary of p;'(B)N C in C (see [4], p. 172),
whence p,(K) must contain a point of the boundary of B in X, i.e.,
r, € p,(K). The continuum p,(K), however, is a subset of the arc B
whose end-points are g, and r,. Thus B =p,(K). We denote g =
p:| K. Hence g: K— B is a continuous mapping of K onto B.

The point s, is a common end-point of the arcs B, and B, whose
union is B. Let J denote the collection of all components of the set
g7 '(B) (i=0,1). Each component of g~'(B;) meets the boundary of
g '(B.) in K (ibidem). Each point of the boundary of g7'(B,) in K is sent
under g into a point of the boundary of B, in B. The latter boundary is
degenerate, namely it is {so}. It follows that

(10) g s)NZ#AD (ZEK ;i=0,1).

The sets M, (j =0,1), defined by the formulae:

M, ={y € g7'(s0): fp(y) = fpAy)},
M, ={y € g"'(s0): fp(y) = fpAy)},

are closed subsets of K and their union is g 7'(s,). We denote by J; the
subcollection of J, consisting of all those elements of ¥, which meet the
set M, (i,j=0,1).

The remainder of the proof is divided into several cases, each of
them ending with a contradiction. In this way, we shall prove that the
surjective semispan of X is, indeed, less than or equal to 3.

Case 1. Hyp=. Since q,€ B,CB = g(K), the point-inverse
g '(q.) is a nonempty subset of g7'(B,). Let K' be a component of
g '(B,) which meets g7'(q,). Then K'€ ¥, and, by (10), the component
K’ also meets g7'(s,) = M, U M,. Hence it must meet M, or M|, that is,
K'€ Hy or K'E€ H,y, respectively. But ¥y being empty, we obtain
K'€ J,. On the other hand, the continuum g(K"’) is a subset of the arc
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B, whose end-points are ¢, and s,. Since both ¢, and s, belong to g(K’),
we have B,= g(K’). Also q, € By, so that q, € g(K’). Let y. € K' be
points such that g(y,)=q. (k =1,2). It follows from the inclusions

K'CKCCCXXX

that g(y.)= p:(y:) and
Y <ag=dist[pi(y), po(yi)] = dist[qi, p(ve)] (K =1,2),

where p,(y.) is a point of the simple triod X. Observe that each point of
the arc S, has a distance less than or equal to ; from ¢,. Similarly, each
point of the arc S, has a distance less than or equal to  from gq,. Thus
(M) E SeUS, (k =1,2). Asaresult, the continuum p,(K') meets both
sets So U Sy and S, U S, whose union X contains p(K'). The continuum
p2(K') must, therefore, intersect the common part of these two sets which
is equal to S,. We conclude Case 1 by proving that the conditions
K'€ 9, and pJK')NS,#J are incompatible. First, we note that
K'€ ¥, means K' N M, # J, i.e., there is a point y, € K’ with g(y,) = s,
and fp.(y;) = fp.(ys). Again, g(ys;) = pi(y;). The t-coordinate of p,(y;) is
less than or equal to the t-coordinate of s,; this is what the last inequality
says. The point p.(y,) is, of course, a point of X, and we see (cf. Fig. 1)
that it can be located only on B, or S, U S,; the remaining points of S,
have t-coordinates greater than the t-coordinate of s,. However, we
also have

Y < ap = dist[py(ys), pAys)] = dist[so, py3)],

and each point of the arc B, has a distance less than 1 from s, (cf. Fig. 2).
Hence p,(y;) € S, U S,. If the continuum p,(K') intersected S,, it would
intersect both S, and S, U S,, so that it would have to intersect the
common part of S, and S, U S, which is the degenerate set {o}. Insucha
situation, there would exist a point y, € K' with o = p,(y,), or, which is
the same thing, a point x,€ X such that (x,,0)€ K'. Then i<a,=
dist(xg,0) and x,€ p(K'). Since p(K')=g(K')CB, we would get
X € By, contradicting (8).

Case 2. J,=. Since r,€ B,CB = g(K), the point-inverse
g '(r,) is a nonempty subset of g7'(B;). Let K” be a component of
g '(B,) which meets g7'(r,). Then K" € J,, and K" also meets g ~'(so) =
M,U M,, by (10). Hence K"€ ¥, or K" € ¥,,. But J, being empty,
we obtain K" € J,,, which means that K" N M, # . Consequently, there
is a point z, € K" with fp,(zy) = fp.(z,). On the other hand, there exists a
point z, € K" such that g(z,)=r,. Thus z,€ K and g(z,) = p:(z,). The
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t-coordinate f(r,) of the point r, is equal to 1, and it is the maximum
t-coordinate of points belonging to X (cf. Fig. 1). It follows that
fp:(z2) = f(r,) = fpi(2,). The continuum K" then contains two points, z,
and z, at which the real-valued functions fp, and fp, switch the
order. As aresult, there exists a point z, € K" with fp,(z,) = fp:(z.). We
denote x, = p\(z,) and observe that z, € K C C. Therefore we have

1< a,=dist[py(z,), pz,)] = dist[x,, ps(2))],

where both points x, and p,(z,) belong to the set f'f(x;). Then
1< diam f'f(x,). Since p,(K")= g(K")CB,, we get x, € B, which con-
tradicts (9).

Case 3. How#D#H,. By (10), we see that ¥ =¥H,Ux,
(i =0,1). Consequently, the continuum K admits the decomposition®

K=g"(B)=g'(B,UB)=g"'(B)Ug'(B)
=|Jo| U] = (| Hoo| U | Hio)) U (| Hr| U |Hni]),

where both sets | #o| U | | and | Hy,| U | 3| are nonempty. These two
sets, however, are closed in K (see [4], p. 182). Their common part must
be nonempty, too, and Case 3 splits into four subcases.

Case 3(a). |Hw| N || #D. In this case, there exists an element
K* € HyN Hy. In particular, K* € ¥, means K* N M, # (J, i.e., there is
a point y* € K* with g(y*) = s, and fp,(y *) = fp.(y *). Thus y * € K and
g(y*)=pi(y*), whence f(s))= fp.(y*). The t-coordinate of p,(y*) is,
therefore, greater than or equal to the ¢-coordinate of s,. The only
points of the arcs S, and S, whose t-coordinates satisfy this inequality are
those points of the segments os, and os;, respectively, which belong to the
sphere of radius ; and center at the origin (cf. Fig. 2). The point s, also
belongs to this sphere, so that its distance to each of those points is less
than or equal to ;. On the other hand, it follows from y* € K C C that

}<ag=dist[p,(y*), py *)] = dist[so, py *)]

and p,(y*) € X.  We conclude that the point p,(y *) cannot be located on
S, or S,. Hence p)(y*)E S, and thus p(K*)NS,#J. Also, K*€&
Ho. It has been proved in Case 1, for K’ instead of K*, that the last two
conditions are incompatible.

* Given a collection % of sets, we denote by |9 | the union of all elements of .
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FIGURE 2

Case 3(b). |%,| N |%H,|#D. In this case, there exists an element
K** € 3, N %,,. In particular, we have K** € %, whence K** CK and
pi(K**)= g(K**)CB,. Being an element of %,, the continuum K**
meets M, (j =0, 1) and, by the definition of the sets M, it contains two
points at which the functions fp, and fp, switch their order. We have
shown in Case 2, for K" in lieu of K**, that this combination of
properties leads to a contradiction.

Case 3(c). |Hw|N|Hn|#D. Let K, € #,; (i =0,1) be elements
that intersect, and let ¢ € K,N K, be a point. Then K Cg7'(B:),
whence

g(c)E g(Ko) N g(K;) CByN By = {so},

that is, g(c)=s,. Thus c€g(s)=M,UM, and cEM, or
ceM, If ceM, then K,€ ¥, and Case 3(c) reduces to Case
3(b). If ¢ € M,, then K, E ¥, and Case 3(c) reduces to Case 3(a).

Case 3(d). |Hyw| N |Hn|#D. Let Lo€ Hy and L, € ¥, be ele-
ments that intersect, and let d € L, L, be a point. As in Case 3(c), we
obtain d € M,U M,. If d € M,, then L, € ¥ and Case 3(d) reduces to
Case 3(a). If d € M|, then L, € ¥, and Case 3(d) reduces to Case 3(b).
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