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In this paper we obtain error bounds to approximations of
e™* on [0; ) by rational functions having zeros and poles only on
the negative real axis.

X

Our main concern in this paper is the question of approximating e~
on the positive real axis by reciprocals of polynomials and by rational
functions, especially by those which have all their zeros and poles on the
negative real axis.

NoratioN. Let m, represent the set of all polynomials of degree
= n. Let 7} represent the set of all polynomials in 7, all of whose zeros
are in the left half plane and = }* represent the set of all polynomials in
7% all of whose zeros are real and negative. Similarly let p, p%, p%*
represent the sets of rational functions of total degree n whose
numerators and denominators are in ,, 7%, m** respectively. Let || |

denote | ||t Then we define

et
hon(f) = inf | 1=

At = ot |13
.n pens p )

* % . 1
Adx(f) = inf ’f——”,

pETR* p

MG = inf 7= rll,
A(f) = inf [If =l
AR () = inf [If - rl.
LemMa (Newman [1], Theorem 2). Letp € wi* where n = 2, then
le* = plle, = (160 + 1),

We obtain the following results.

(Theorems 1, 2): (17e’n)"'= Af¥(e )= (en)', n=2.
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(Theorem 3): A%, (e *)=2(ne)?, n=1.
(Theorems 4, 5): e ™" = A¥*(e™)=n™*", n=2
(Theorem 6): e ™" = A%(e™), n=2.

THEOREM 1. For all n =1,

()
n

Proof. For all x 20 and n =1 we have

1
ne -

1)

=

0= <1+—{)" = e~
n
Hence

-n -n -n-1
0§<1+1) —e**§<1+1> —<1+£) =1 foranl x=zo,
n n n ne

because, (1+(x/n))"—e™* attains its maximum when e*=
(1+(x/n))"*". Hence (1) follows.

THEOREM 2. For all n =2 we have

2) AF¥¥(e™) = (17e’n)".
Proof. Set
1
3 e || =
® ¢ Tl
Then

l e —Ppn (x)”l»nlu, n= Eepn(l)’

since p,(x) has only nonnegative coefficients. From (3), we get

(4) (XOIREPREPEEESES
From (3) and (4), we have
) le* = pu () = 75

On the other hand we have from the lemma that
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(6) le* = pa(X)lliwy = (16n + 1),
From (5) and (6), we get
ee’(lbn +1)=1— ee.
Hence (2) follows.
THEOREM 3. For all even n

-x .2.5 2‘_2 o < -2
e <1+n+n2) = 8(ne)™.

Proof. For all x 20, n =1, we have
2
o (2) = (1424 25,
n n n
We also know that

1+ x + x?/2! has zeros only in the left half plane.

The function

2\ —n/2
(1425, 22) ™,
n n

attains its maximum when
2x 2 2\ n/2+1 -1
e’=<1+—+—%) <1+gf) .
n n n

Therefore

Hence the theorem is proved.
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THEOREM 4.  There is a constant ¢ >0 so that for all n = 2, we have

(7) At*(e~x)§n—clogn‘

Proof. We use the following formula.
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R x 1 m!
®) 2, (=D (':)kﬂ‘s(s+1)(s+z)---(s+m)'

Set N=1lcm[1,2,---,m],t = N/s =0and e = (m!’N~". Then using the
fact that t" =m!e’, we get

- « N 1 mltm
©) sz:.(_l) E(Z)Hy' (N+1)(N+2t)--- (N + mi)
k

—_ (mWe' _ ee
TN +(m!)Ye' " 1+ee'’

By integrating (9) with respect to ¢ from 0 to x we get
(10) 0=x+logR(x)=log(l+ ee*),
where R(x) =1, (1+ (xk/N)):V"®0® From (10), we get

0=e'R(x)—1=ee”.
That is
0=R(x)—e*=e
From prime number theory we know that there exist positive constants
a, Bsothate™ < N <ef" forallm =1. Hencedeg R(x)=N2" =n if
we choose y log n < m < 8 log n, where v, 8 are positive constants. From
this choice of m, we obtain (7). That is,
e=n"°"" as required.
THEOREM 5. For all n =2 we have

(11) A¥¥(e )z e oV,

Proof. In (8) set s = m(1+t) and integrate, then we get

(12) 2(—1)k (;{") log (1 +§1’%’%>
=Lf”" dt ,
Zr:l") ’ (1+t)<1+mt111>---(1+§t-'n%)
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and observe that for U, A >0 the right side of (12) is bounded by

(13) 1 = dt — 2 ‘
| B o
Again (8) with s = m give us
()

Assume there is a rational function of total degree n, set.

n

r(x)=e“1_[ (1+ xu,)s, €= =*1, u =0,

k=1

such that

e —r(x)] = ¢
thus
(15) ” e'r(x)— 1”L«cx<>4/~1 See’.

From (15), we obtain
c— Y elog(l+xu)+x=log(l+e?)<ee”® for 0=x=A.
=1

Now set x = mA/(m + k) to get

RN mAuy; mA M _
(16) ¢ ;e,log(l+m+k>+m+k<ee, k=0,1,2,---, m.

Applying the difference operator m times on both sides of (16). We get in
view of (13) and (14),

(17) _2M A< (2’"> 2mee .
m m
Now choose m =[V'n], A =3Vn then

€= Vn2e)y™" >e " as required.

THEOREM 6. For all n =2, we have
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A )z e,

Proof. The proof of this theorem is not very different from the
proof of Theorem 5, except that we use ¢ = ve®, | 8| = 7 /2, and obtain

(18) kio (— 1y (’If) log (1 + m’”i"}()
1 J'UA dt
(2’1'1") ’ (1+t)<1+mtT1)"'(l+§t%)

A

= 21m J: dvv2 = 2m1 —
(w) " (e3) () v

2

Now by using (18) instead of (12) and (13), we obtain as in the case of
Theorem 35,

n 2m
——=+A§2”eA< )
Vm m) €

Choose m =[n*’], A =2n*” then we get
€ = n8 e > e  as required.
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