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Postulated here are very general but nevertheless concrete
notions of plus and times. The generality achieved lessens the
need for abstract linear spaces. The addition and multiplication
are universally associative and commutative and multiplication
rather widely distributes over addition.

The addable entities are of three general types: numbers,
functions, and classes. The numbers are the finite complex
numbers along with certain infinities. The addable functions are
addable valued nonvacuous functions. The addable classes are
free of numbers and ordered pairs; they are structured nonvacu-
ous classes of addable entities. Many addable classes arise, as in
§5, as congruence classes from an equivalence relation. In
particular, the usual complex Lebesgue classes are among the
addable classes.

Foremost in our minds when deciding which classes would be
addable and how they should be added and multiplied were certain
traditional equivalence classes. Suppose for example we regard as
equivalent any two complex finite valued functions which are on the unit
interval and are there almost everywhere equal. We notice here: that the
sum and the product of two corresponding equivalence classes can be
calculated combinatorially’; nonzero scalar multiplication can be
achieved in the natural combinatorial manner; whereas zero scalar
multiplication of a class is the combinatorial difference of the class with
itself. Accordingly the algebra of these classes does not depend on how
they arose. In keeping with this we wish to stress that, in general, the
addability of classes will depend solely on the behavior of their members
and not on how the classes arose. To smooth our path we insist at the
outset that each numerical valued function in an addable class be finite
valued. If we meet a tentative candidate of finite value somewhere and of
infinite value somewhere then we recommend its restriction in domain to
the points where it is of finite value.

The set theory we use is given by J. L. Kelley in the appendix to his
General Topology, except that his ordered pair is to be revised in the
spirit of §3. The empty set is 0, the universe is U, and it is important to
realize that

® This particular addition permits cancellation, but combinatorial addition for nonvacuous
closed subsets of the unit interval does not.
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f(x)=U

whenever f is a function and x € domain f. It is also important to realize

that

We agree

We agree:

{x}=U whenever xgU.

scstx = x U{x}.

0 = the empty set;

1=scsr0;
2=scsrl1;
3 =scsr2;

We agree that w is the set of all these natural numbers.
Of course 0 is a function with domain 0 =0 and

0(x)=U foreach x.

If the result, in a given instance, of an operation is U, then, in that
instance, we think of the operation as unperformable. We shall have

x+U=U=x-U.

To guide the reader we suggest:

the pure imaginary unit = i;

the extended real number system = rl;
the real finite numbers = rf;

real infinity = o;

/.
’

—0 =0
the finite complex numbers = kf;
complex infinity = &;

the directed infinities = dinfin;

the complex extension = kt.
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In matters of order and arithmetic we assign:

completely traditional properties to rf and kf; widely
accepted arithmetical properties to the extended complex
plane,

kf U {ob};

generally accepted properties of order, but not yet of
arithmetic, to rl.

The foundation of our whole construction is kf.
Traditionally addition and multiplication have involved o~ and
%. We shall uphold this tradition but since

i-(i-0)=(i-i)-= —o,

we are forced to recognize that i - @ must be palpable or, in other words,
different from U.
The calculation

oo+(oc—oc):(oc+oc)—oo=oo—oo

persuades us that
o —o = U;

the possibility that

W—0=0 Qgf X—Xx= —xX

leads us to the contradiction that

0= — o,

We think of the directed infinities as the rays emanating from the
origin of kf and we think of & as kf. Addition of infinities is U unless both
infinities are the same directed infinity; a directed infinity added to itself
is itself; a scalar added to an infinity is the infinity; multiplication of
infinities is combinatorial; nonzero scalar multiplication of an infinity is
to be achieved in the obvious combinatorial manner; zero multiplication
of an infinity is U.

The addition and multiplication of nonvacuous functions is given in
1.14.3 and 1.14.4. We want to stress here that 0 is never the answer.

We close the paper in §6 with a brief discussion of linear spaces.

Although unpublished, all of the results in §2 have been for many
years known to A. P. Morse and his students.

We are grateful to Trevor J. McMinn for helpful suggestions.
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1. Postulates. We regard the expressions

(98]

‘repr x/, ‘Sup A, v, ‘(x +y), ‘(x-y)y
as those forms which primitively enter our postulates. In these
6rcpr” ‘Sup’, ‘i’, 6+ ” ‘.7

are constants. In AM' we have shown that these constants can be so
fixed by definitions that all our postulates become theorems. Some of our
postulates first emerged from a long inductive construction described in
AM. Notable among these are: 1.6, 1.12.1, 1.13.2, 1.14. In §2 of AM we
have shown that, in a reasonable sense, our postulates uniquely describe
our addition and multiplication.

We think it noteworthy that Postulates 1.0-1.3 do not involve plus
and times.

The postulates of structure which involve the actual makeup of
members of kt are: 1.2, 1.9.0, 1.9.1, 1.10.2, 1.10.3, 1.12.3.

In 1.6.3 we have addable classes in mind.

If x and y are complex Lebesgue classes for the unit interval then, in
the sense of 1.6.5,

x=+=y,

and x = y in the event that x N y # 0. Because of this we find 4.5 and the
sentence preceding 4.6 of particular interest.

1 POSTULATED DEFINITIONS.
(x =y) iff Sup{xy}=y#U.
(x<y)iff x=y and x#y.
rl={x: x =x}.
= Suprl.
"= Sup 0.
rf={x: ' <x <o},
rfp={x: 0<x <}
p={x:0<x}.

Nobrbhiu=oo

POSTULATES.
A Crliff Sup A €1l iff Sup A # U #rl.
If A Crl and ¢t €1l then

—_ o =

SupA =1

" R. F. Arnold, Plus and Times, Thesis, University of California at Berkeley, 1969.
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iff
y =t whenever y € A.

If {xy}= A Crl then Sup A € A.

POSTULATES.
o={x:0=x <o}
w Crf.

POSTULATED DEFINITIONS.
% = rcpr 0.

kt ={x: rcpr x # U}.

infin = {x: rcpr x = 0}.
kf =kt N ~ infin.

dinfin = infin N ~ {&}.

POSTULATED DEFINITION. (x —y)=x+(i-1)-y.
POSTULATED DEFINITIONS.

(A+ +B)={x+y:x€ A and y € B}.
(A--B)={x-y:x€ A and y € B}.
(A——B)={x—y:x€ A and y € B}.

POSTULATED DEFINITIONS.
Reverted x iff

O+x=x=x+(x—x)#U.

reverted = {x: Reverted x}.
Add'x iff x is such a nonvacuous function that

O+ x(t)=x(t) foreach ¢

Add"x iff

0 # x Creverted N ~ kt,

x+ +(x——x)Cx,
{A}:-(x ——x)Cx——x whenever 0# A €kf.
Add x iff

x€kt or Add'x or Add'x.
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S (x=+=y)iff
Add"'x and Add'y and x ——x=y——y.

6 (x=-=y)iff
x:+:y
and

w--z=+4+ =x whenever w=+=x and z=+ =x.

1.7 POSTULATES.
0 reprx# U iff repr x € kt iff x € kt.
1 If x + y# U then

x+yekt iff xe€kt and y€Ekt
2 If x-y# U then
x-yekt iff xe€kt and y €&kt
3 If x €rf and y € rf then
xty€r and x-y€rf.
4 If x €Erp and y € rp then
x+y€rmp and x-yErp.

1.8 PostuLaTE. If x €1l and y €1l then
x<y iff y—x€Erp.

1.9 POSTULATES.

0 If 0# x €kt then 0 € x.

d e=kf={x: x—x =0}

2 dinfin={z-u:u =0 and 0 # z € kf}.
1.10 POSTULATES.

.0 If x €kf and y € infin then x +y = y.
.1 If x €infin and y € infin then

x+y#U iff x+y=y iff x=y €& dinfin.
2 If 0# x €kf and y € infin then
x-y={x}--y

3 If x €Einfin and y € infin then



PLUS AND TIMES

x.y:x..y‘

POSTULATES.
z € kf iff for some x € rf and some y € rf,

z=x+1y.
If x €rf and y € rf then
x+i-y=0 iff x=0 and y=0.

POSTULATES.

If x €kt then 0+ x = x.
0+x=1"x.

If 0# x € kf then x -rcprx = 1.
If x € w then scsrx = x + 1.

POSTULATES.
xty=y+txandx-y=y-x.
xt(y+z)=(x+y)tzand x-(y-z)=(x
If Revertedz then z-(x ty)=z-x+2z-y.

POSTULATES.
If x+y#Uorx-y#U then Add x.

If x €kt and Add'y and z is such a function that

z(t)=x+y(t) foreach ¢
then:

if z#0 then x+y=z;

if z=0 then x-+y=U.

If x €kt and Add'y and z is such a function that

z(t)=x-y(t) foreach ¢
then:

if z#0 then x-y=z;

if z=0 then x-y="U.

If Add’'x and Add'y and z is such a function that

z(t)=x(t)+ y(t) foreach ¢
then:

“y)-z.
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if z#0 then x+y=z;
if z=0 then x+y=U.

4 If Add’'x and Add'y and z is such a function that

z(t)=x(t)-y(t) foreach ¢
then:

if z#0 then x-y=2z;

if z=0 then x-y=0U.

If x €infin and if Add"y then x +y=U=x-y.
If x € kf and if Add"y then x +y ={x}+ +y.
If 0 # x € kf and if Add"y then x -y ={x}--y.
0-x=x—x.
If Add'x and Add"y then x +y=U=x-y.

0 If Add"x and Add"y then:

— o 9o n

x'y#U iﬁ X'y=X"y iﬁ x=-=y.

1.15 POSTULATED DEFINITION.
grp x = {y € reverted: x € reverted and y —y = x —x}.

With some reluctance we add Postulate 1.16 which is a consequence
of the others. The proof of 1.16, we have in mind, is somewhat
lengthy, and although independent of ordinal theory, is strongly
dependent on the Axiom of Regularity and the ordered pair theory given
by A. P. Morse in 2.55-2.63 of A Theory of Sets. An intuitively pleasant
consequence of 1.16 is 6.4. No other use is made of 1.16.

1.16 PostULATE. grpx € U.

1.17 DEFINITIONS.
O —x=(@G-i)-x
d  x/y=x-rcpry.

2. The complex extension. Many properties of the (ex-
tended) real numbers, rl, can be proved using only 1.0, 1.1, and 1.2.
Among these are Theorems 2.0 below.

2.0 THEOREMS.
0 Ifx=ythenx€E€rl and y €1l
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Proof. From 1.0.0 and 1.1.0 we see
Sup{xy}=y#U and {xy}Crl

.1 If A Crl then
y =Sup A whenever yE€E A.

Proof. Using 1.1.0 and 1.0.2 we see

Sup A €1l
and so
Sup A =Sup A.

Because of this and 1.1.1
y=Sup A whenever y € A.
2 Ifberl and y = b whenever y € A then Sup A = b.
Proof. Use .0 to conclude A Crl. Now use 1.1.1.
.3 If ACBCrl then Sup A =Sup B.
Proof. Use .1, .2, and 1.1.0.
4 rl={x:0" = x =},
Proof. After noting that
0C{x}Crl whenever x Erl,
use 1.0.3, 1.0.4, .3, 1.1.2, and .0.
Sorl=rf U {eo’ oo}
6 Ifx€rland yErl thenx=yory=x.
Proof. Use 1.1.2 and 1.0.0.
J x=yiffx<yorx=y€ErIl
8 Ifx=yandy=zthen x =z.

Hint. Let A ={xy} anduse 1.1.1.
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9 Ifx=yandy=xthen x =Y.
10 0€rf and 1€ 1f.
Proof. Use 1.2.1.
A1 rfpCrfCrl
12 1p = rfp U {oo}.
A3 rfpCrp Crl.
2.1 THEOREMS.
.0 kt=kfUinfin.
1 kf={x:0-x =0}
Proof. Use 1.9.1 and 1.14.8.
2 i€kf.
Proof. Because of 2.0.10, 1.11.0, .0, 1.7.1, and 1.7.2 we have

0+i-1€kf
and
i € kt.
From this, 1.13.0, 1.12.1, and 1.12.0 we see

i=0+i=0+i-1€kf.
3 w CrfCkfCkt.
Proof. From 1.2.1 and .0 we have

w Crf and kfCkt.

Furthermore, if x € rf then, because of 2.0.10, 1.11.0, .2, .1,
1.7.1, and 1.12.0,

kfSx+i-0=x+0=x

and so
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rf Ckf.

4 kfCreverted.
Proof. Use 1.9.1, 1.12.0, and 1.13.0.
S Ifz€kfthenz-(x+y)=z-x+z-y.
6 iri=-land —x=—-1-x.
Proof. Use 1.17.0, 1.13.1, 1.13.0, .2, .0, 1.12.1, and 1.12.0 to see
-1=@G(-)-1=i-@-)=i-A-)=i-i

Consequently,
-1=ii and —-x=(-1)-x=—-1-x.

Jox—y=x+—y.
.8 x€kfiff —xekf

Proof. Because of .1 and .2 we see

0-x=(0-i)-x=(0-i)i)-x=0-(G-i-x)=0 —x.

Thus
0-x=0 iff 0--x=0
and so
x€E€kf iff -x€&kf
9 —-1--1=1.

Proof. Relying on .3, .8, .7, and .1 we have
1=14+0=1+-1-0=1+-1-(1+-1)
=1+-1-1+-1--1=(1+-1)+-1--1
=0+-1--1=-1--1.
10 Ifx €ktthen — —x = x.

Proof. Use .6, .9, 1.12.1, and 1.12.0.

11 x EKtiff —x €kt
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Proof. On the one hand, from .10 and .6, we have
x=—-——-x=-1-—x whenever x €kt
and so because of 1.7.2
—x €kt whenever x € kt.
On the other hand, if — x € kt then from .6
-1-x €kt
and so because of 1.7.2, x € kt.

12 xerf iff —xerf.

Proof. Assume x € rf and using .3, .8, and 1.11.0, so choose a € rf
and b € rf that

—x=a+i-b
and check that
0=x+-x=x+(a+i-b)=(x+a)+i-b.

But, because of 1.7.3
xt+ta€erf
and so, because of 1.11.1
b=0
and

~-x=a+i-0=a+0=a€rf.

Consequently,

—x €rf whenever x €rf.
Because of this, .10, .3, and .11 we also have
x=—-—x€&€rf whenever —x€Erf
A3 Ifx Ektandy Ektthen —x-—y =x-y.

Proof. Use .6 and .9.
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14 0<x iff x € 1p.
15 0&rp and 1€ 1p.
Proof. Because of 2.0.6

0<1 or 1<0

and consequently, from .14 we have
l€rp or 1<0.
But, because of 1.8, if 1 <0 then
-1=0+-1=0—1€1p
and so, using 1.7.4 and .9 we infer

1=-1--1€r1p.
16 —1#0.
Proof. If —1=0 then because of .9 and .1,

0=0-0=—1-—1=1={0}#0.

2.2 THEOREMS.
.0 % Einfin N ~dinfin.
Proof. Using 1.3.0, 1.7.0, and 2.1.3 we see
@ = rcpr 0 € kt.
From this, 1.9.1, 1.3.1, 1.3.2, and 1.3.3 we obtain

e=kfZkf and P€EktNn ~ kf=infin.
Now use 1.3.4.

.1 infin = dinfin U {&}.
.2 e dinfin.

Proof. From 2.0.12 and 2.1.15 we have
x€rp and 1€rp



310 R. F. ARNOLD AND A. P. MORSE
and so, because of 1.7.4,
1-o€rp.
Thus
1-c€U and 1- €& dinfin.
But then, because of .1, 2.1.0, and 1.7.2

1-0€kt and =€ kt.
Employing 1.12.1 and 1.12.0 we conclude

o = ] - € dinfin.
3  1pCkt.

4 «©'= —oo€& dinfin.
Proof. Since »' <0 we see, helped by 1.8 and .3, that
0—x'=0+ —'Erp and -2 €Erp.

But, because of 2.1.12

o'erf iff —x'erf
and so

—w' ErpN ~ rf = {oo}
and

:oo‘

Now, using .3, 2.1.11, 2.1.10, 2.1.16, and 1.9.2 we conclude

!

w'=— —w'=—0w= —1-0¢& dinfin.

S 1l Ckt.

6 rf=kfNrl

T xerliff —xerl

8 x<0iff —xeErp.
Proof. Use 2.0.0, 1.8, 2.1.7, .7, .5, .3, and 1.12.0.

9 x €infin iff — x € infin.
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Proof. Use 2.1.11 and 2.1.8.
10 If x € dinfin then x# — x.

Proof. Using 1.9.2 so choose z that

0Zz€kf and x =2z -co.

Accordingly,

—xX=—Z:-0=7-+:—00=

Now if x = — x then

j— !
z 0=z 0

(rcprz)-z -o=(reprz)-z -,

l-oc=]~oc’»’
o = oo’ < o0,

Thus x# — x.

A1 If x €infin then x —x =U=0"-x.

Proof. Use 1.10.1, .9, .10, and 1.14.8.
A2 0-x=0iffx €kfiff 0-x €Ekt.

Proof. Use 1.7.2, 1.3.3, 2.1.1, and .11.

A3 x+y€ekfiff x €kf and y €kf iff x -y €kf.

Proof. Recall first that
0-(x+y)=0-x+0-y,

0-(x-y)=0-x)-y=x-(0-y),

and then use 1.7.1, 1.7.2, and .12.
14 If x € dinfin then x + x = x.
A5 ot =0,
.16 If x € infin then x +& = U.

A7 If 0# x €Kf then x - = .

311
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Proof. Using 1.10.2, 1.9.1, and .13 we see
x - ={x}- - kfCkf.
Furthermore, in the light of 1.12.2, if y € kf then

y=1l-y=x-recprx-y€{x} - kf=x-o
and so
kfCx - .
Thus x - % = kf = .

A8 oo =dp,
Proof. From 1.2.0 we learn
1 € o Ckf.

Because of this, 1.10.3 and .17 we have
w-cp=o0--bCkf

and
kf={1}- -kfCoo -
and so
w0 =kf=d,
19 b=,

20 If 0# x Ekt then x - = .

21 If 0<x then x -® =,

Proof. Using 2.1.14, 2.0.12, and 1.7.4 we see that
x -0 € rp = rfp U {x}.
But, from 2.0.11, 2.2.6, and .13 we learn
if x-o€rfp then ox€Kkf
contrary to 2.2.2, 1.3.3, and 1.3.4. Thus

X - 00 =00,
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22 Ifx <0 then x - = —
Proof. Use .8, 2.1.14, and .21 to conclude
—x-0=cc,
Now, helped by 2.1.6, 2.1.13, 1.12.0, and 1.12.1, we see
—o=—1-(—x-0)=(—1-—x)-0c=(l-x)-0=x -,
23 Ifx€rland y€E€rl and x + y#U then x +y €1l
24 Ifx€Erlandy€E€rl and x -y#U then x -y €1l
25 0# X €kf iff 0# rcpr A € kf.

Proof. Use:1.12.2,2.2.13,2.1.1; 1.3.1, 1.3.2,1.3.3, 1.3.0, 2.2.0.

3. Integrity. Some of the ordered pairs of Norbert Wiener are
functions.” Free from this blemish is the ordered pair given by A. P.
Morse in 2.57.1 of A Theory of Sets. It turns out that

if x is an ordered pair then 0Z x and {{0}} € x.
Using this and 1.9.0 we prove the Theorems of Integrity below. These
theorems help us verify that two intuitively different things are actually
different.

3.0 THEOREMS OF INTEGRITY.

0 If 0# x €kt then x is not a relation.

Proof. Because of 1.9.0, 0 € x. But 0 is not an ordered pair since

{0} 0.

.1 If x is a relation then x is not an ordered pair.

Proof. 1If x is an ordered pair then: {{0}} € x; but since {{0}} & {{0}} it
follows that {{0}} is not an ordered pair; thus x is not a relation.

.2 If x is an ordered pair then x & kt.

* An example is {{{O0}}.
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Proof. Clearly 0 is not an ordered pair. Furthermore, because of
1.9.0, if 0 # x € kt then 0 € x and so x is not an ordered pair.

4. Generalities.
4.0 THEOREMS.
0 If Add x then x# U.
1 x+U=U=x-U.
2 Ifx€eUandy€U then:
if x+y#U then x+y€eU;
if x-y#U then x-y€U.
Proof. Use 1.7.1, 1.7.2, 1.14, and set-theoretic considerations.
3 If Addx then 0+x=x=1"x.
Proof. Use 1.6.4, 1.12.1, 1.12.0, 1.6.2, 1.14.1, 1.6.3, and 1.14.6.
4 O+x+y=x+y=1-(x+y)and 0+x-y=x-y=1-x-y.
Proof. Because of .1, x+y=U and x -y = U then
0+x+y=0+x-y=0+U=U=x+y=x"y.
Employing 1.14.0 and .3 we infer

if x+y#U or x-y#U then Addx
and so
O+x+y=0+x)+y=x+y
and
l-x-y=(0-x)-y=x-y.
The desired conclusion now follows from 1.12.1.

S If Add x then — —x = x.

Proof. Helped by .3 we infer
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-—x=-1--1x=1-x=x.
6 Ifx+y#U then Add(x +y).
Proof. Using .4 and 1.14.0 we see
(x+y)+0=0+(x+y)=x+y#U and Add(x+y).
g Ifx-y#U then Add(x -y).
.8 If Reverted x then Add x.
Proof. Use 1.6.0 and 1.14.0.

For those dismayed by .9 below we first agree that

(x,y)={(1,x)2,y)}

Next we notice that

Add'(x,y) whenever x €kt and y €kt.
Accordingly,
(3,2)+(5,7)=(8,9).

.9 If x is an ordered pair then ~ Add x.
Proof. From 3.0.2 we see x & kt.

From 3.0.1 we see ~ Add'x.
Now suppose Add”x. Since

x Creverted N ~ kt,
and, since x is an ordered pair, helped by .8 we see
{0}} € x, {{0}} € reverted N ~ kt, Add{{0}}.
Now 0 € {0} and so {0} is not an ordered pair. Consequently,

{{0}} is not a relation, ~ Add'{{0}}.

Furthermore

{{0}} = {1} Z reverted N ~ kt, ~ Add"{{0}}.

Contradictorily we conclude ~ Add{{0}}.
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Thus ~ Add"x and ~ Add x.
10 If x € kt then ~ Add'x and ~ Add"x.
Proof. Use 3.0.0, 1.6.2, 1.6.3, and 1.9.0.
A1 If Add'x then ~ Add"x.
Proof. Use 1.6.3, 1.6.2, .8, and .9.

An alternative but less enlightening proof of .11 shuns .9 but
depends on 1.14.9 and on .12 below.

12 If Add'x and z and w are such functions that, for t € U,

z(t)=0 and w(t)=1,
then
Add'z and Add'w and z+x=x=w-x

A3 If x+y# U and Add'x then Add'(x +y).

Proof. Use 1.7.1 and .10 to conclude x + y & kt.
Choose z in accordance with .12 and use .12 and 1.14.9 to see

z+(x+y)=(z+x)+y=x+y#U
and so

~ Add"(x +y).
Consequently, because of 1.14.0, Add'(x + y).
14 If x -y#U and Add'x then Add'(x -y).
15 Ifx+y#U and Add’x then Add"(x + y).
Proof. Use 1.7.1 and .10 to conclude x + y & kt.

Again choose z in accordance with .12 and use .12, 1.14.9, and .1 to
see

z+(x+y)=(z+x)+y=U+y=U

and hence, because of .12, ~ Add'(x + y).
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Because of 1.14.0 the desired conclusion is now at hand.
16 If x -y# U and Add"x then Add"(x -y).
17 If Add"y then x ——y =x+ + —y.

18 If Addx and 0# A €Ekf then A - x# U.

Proof. Helped by 1.12.2 and .1 we see
U#x=1-x=(Xx-tcprA)-x = (rcprA)-(A - x)
and A - x# U.

19 If 0# A €kf and Add'x then' Add'(A - x).

Proof. Use .14 and .18.

20 If Add"x then x = + = x.

21 Ifx=+ =ytheny=+ =x.

22 Ifx=+=yandy=+ =zthenx =+ = 2.
23 Ifx=-=ytheny=-=x..

24 Ifx=-=yandy=-=zthenx = =2z

£.’

A theorem is not obtained from .20 by replacing ‘+’ by
Nevertheless if x =-=y then x =-=x.

25 If Add"x then x = + = —x.

Proof. Use .18 and .16 to conclude Add”— x. Then use .17.

26 Ifx=+=ythen U#x—y=x——y.

Proof. Use .25, 1.14.10, and .17.
27 IfAEkfthen - (x —x)=A-x—A-x=x—x.

Proof. Using 2.1.5 and 1.14.8 we see
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Ar(x—x)=Ax—2A-x=0-A-x)=0-A)x

=0-x=x—x.
28 If A € kf and Add"x then Add"(A - x).
Proof. Use .26 and .16 to conclude
0-x=x—x#U and Add"(0-x)
and hence because of .18 and .16
Add"(A - x).
29 If Add"x and A €Ekf then x = + = A - x.

Proof. Helped by .28, .26, and .27 we see

AX——A X=AX—A X=X—X=X——X
and
xX=+=A-x
30 If x Creverted and x + + x ——x Cx then
x++x——x=1x.

Proof. Evidently if u € x then
u=utu—uex++x——x
and hence x Cx + + x ——1x.

31 If Add"x then x + x —x = x.

Proof. Helped by 1.14.8, .29, 1.14.10, .26, and .30 we see

xX+x—x=x+0-x=x++0-x

=x++(x—x)=x+t+x——x=x
32 If Add"x then Reverted x.

33 Ifx+y#U and Add"x then (x +y)= + =x.
34 Ifx-y#U and Add"x and Add"y then (x -y)=-=x.
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35 Ifx-y#U and Add'x then (x-y)=+ =x. -

4.1 THEOREMS.

0 If Revertedx and Revertedy and x+y#U then
Reverted(x +y).

1 If Revertedx and Revertedy and x-y#U then
Reverted(x - y).

.2 If Reverted x and A € kf then Reverted(A - x).

3 If x Ereverted N ~ kt then Add"grp x.

4 If Reverted x and x —x =y —y then x + y# U.
Proof. Helped by 1.6.0 and 4.0.1 we see

UAx=x+(x—x)=x+(y—y)=(x+y)—y
and

x+y#U.
42 THeEOREM. If Add"x and Add"y and 0# x + +y then
Add"(x + +y).

4.3 THEOREM OF CANCELLATION. If x +y =mn and Reverted x
then (x +n)—((x+n)=n—n.

Proof. Using 1.13 and 1.14.8 we have

(x+n)—(x+n)=0-(x+n)
=0-x+0-7q
=0-x+0-(x+y)
=0-x+0-x+0-y
=0+0)-x+0-y
=0-x+0-y
=0-(x+y)
=07
=n—n.
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4.4 THEOREM OF SHIFT. If Add"x and € x — x then there is such
atEx that ¢ —§¢=n—n.

Proof. So choose u, v, and ¢ that

uE€Ex, v E X, n=u—r,
and
E=u+n.
Then, from 1.6.3 and 4.3 we have
u€reverted and £—¢é=1n—n.

Now, helped by 4.0.2 and 4.0.30 we see

(utu—v)—u=@ut+tu—u)—v
=u—v=nm€U,
utu—ov#U, u+u—vevuy,

and

E=u+n=utu—vEx++x——x=x
45 THEOREM. Ifx =+ =y and x Cy then x =y.
Proof. Assume z € y. Then since y Creverted,

z=z+z—2z.
Thus,
z—z#U and z—zE€Ey——y=x——x.

Consequently, we so choose u € x and v € x that

Z—2zZ=uUu—v
and infer

z=z+4+z—z=z+tu—v=z—0v+uU
But, since x Cy,

vEy and z—v#U and z—vEyYy——y=x——2x.
We now so choose r € x and s € x that

Z—U0=r—s§



PLUS AND TIMES 321

and conclude

z=z—v+u=r—s+u=r+u—sex++x——x Cx.

Thus z € x. The arbitrary nature of z assures us that x = y.
In connection with 4.5 we note that if

£={0,01@, 03, = ={0O,0H1, D},

then
E=+=mn &Nn={O,0}#0, &#n

4.6 THEOREMS.
0 If x € kf then grp x = kf.

1 If Add'x then grpx ={y:y is on domainx and for each
t € domain x, y(t) € grp x (1)}.

Here grp x is a Cartesian product.
2 If Add"x then gripx ={y:y= + =x}.

47 ConjecTUrRE. If Add"x, s € x, and t € grp s, then thereisay
for which

tey =+ =x.
5. Equivalence relations.

5.0 DeriNiTION.  Relation”R iff R is such an equivalence relation
that:

domain R Creverted N ~ kt;
(s +u,t +v)E R whenever s, t, u, and v are such that
(s, 1) ER, (u,v) E R, stuzU#t+v;
(A -5, A -t)E R whenever s, t, and A are such that
(s,t)ER, A € kf.

5.1 THeoReM. If Relation”R and 0# x ={u:(u,a)€E R} then
Add"x.
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We give the proof in 4 parts.
Part 0. 0# x Creverted N ~ kt.
Part 1. x++x——xCx.
Proof. Suppose u € x, v € x, w € x, and
utv—wex+ +x——x
Thus (u,a)ER, (v,a)ER, (w,a)ER, (—w, —a)ER, and

(utv—wa)=(u+tv—w,ata—a)ER
Consequently,

u+v—weux
Part 2. {A}--(x ——x)Cx ——x whenever 0 # A €Ekf.
Proof. Suppose u € x, v € x, 0# A €kf, and

A(u—v)eE{Ar} - (x ——x).
Thus
0 (w,a)€R, (A-uA-a)€R, and (—A-v,—-A-a)ER
and because of 4.0.27
1 UZA-(u—v)=A-u—A-v
=A-(utu—u)—A-v
=A-utArA-(u—u)—A-v
=Autu—u—A>A-v
=(u+A-u—Ar-v)—u.
Thus ‘
ut+A-u—A-v#EU

and hence because of .0

uu+r-u—r-va)=u+tAr-u—Ar-v,ata—a)
=(u+A-u—A-v,atr-a—Ar-a)ER
Accordingly,
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Uut+tA-u—AiA-v€Ezx
and, because of .1

A(u—v)Ex ——x.
Part 3. Addx.
Proof. Use 1.6.3 and Parts 0, 1, and 2.

5.2 THeoreMm. If Relation”R, 0# x ={u:(u,a)€E R},
0 # A € kf then

Ax={u:(u A -a)€ R}
Proof. Use 2.2.25, 1.12.2, and 5.0 to check that
(u,a)e€R iff (A-u,A-a)ER.
Now use 5.1 and 1.14.7.
5.3 THeoreM. If Relation”R,

0#x={u:(u,a)€ R},
0#y={u:(u, b)€E R},
and
corresponding to each s € x there is such a w € y that
w—w=s—s,

then:
0 (a—a,b—Db)ER,;

d x——xCy——y.

323

and

Proof. Recall first that if g€ExUy then ¢q+q—q =¢q and

q—q €U
So choose w € y that

w—w=a—a.
Thus
(w,b) E R, (—w,—b)ER, and
(a—a,b—b)y=(w—w,b—b)ER.
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The proof of .0 is now complete. Next assume
s Ex, tE x, s—teEx——x
and note that
(s,a)ER, (t,a)ER, (s—t,a—a)ER,
and because of .0,

2 (s—t, b—b)ER.

Now so choose w that

3 (w,b))ER and w—w=5—s5.

Hence

4 U#gs—t=s+s—s—t
=stw—w—t
=(w+s—t)—w,

and so

w+s—t#U.
Because of this, .2, and .3

w+s—tb)y=(w+s—tb+b—>b)ER.

Accordingly,
wt+s—t&y

and, because of 4
s—tey——y.

The proof of .1 is now complete.
5.4 THeorReM. If Relation"R,

0#x={u:(u,a)€ R},
0#y={u:(ub)E R},
and

corresponding to each s and tinx U y is such a
w that
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(w,t) ER and w—w=s5—s3,
then
x=+=y.
5.5 Tueorem. If Relation”"R, a + b# U,

0#x={u:(ua)E€ R},
0#y={u:(u,b)E R},
z={u:(u,a+b)E R},
and
corresponding to each sand tinx Uy U z
is such a w that
(w,t)ER and w—w=s—s
then
x+y=z

Proof. Helped by 5.4, 4.0.33, and 1.14.10 we see

x:—{—:y’ x:+:z’

xty=x+t+y, x=+=(x+y),
.0 z=4+=(x+y)
Evidently
xt+ty=x++yCz

and consequently, because of .0 and 4.5,

x+y=z

For many applications a more pleasant equivalence relation is

available.

5.6 DeriNiTION.  Relation + R iff R is such an equivalence rela-
tion that for each s, ¢, u, v in domain R and each A € kf:
domain R Creverted N ~ kt;
if (s,t)€ R and (u,v) € R then
(s+ut+v)ER and (A-s,A-t)ER;

for some w
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(w,t)€R and w—w =s5—5;

grp s Cdomain R.
5.7 THeoreMm. If Relation+ R then Relation”R.

5.8 TuHeorem. If Relation”R, D = domain R, and

gipx =D whenever x €D,
then

Relation + R.
Proof. Use 5.0, 5.6, and 4.1.4.

5.9 THeorem. If Relation+ R,
0#x={u:(ua)€ R},
0#y={u:(u,b)E R},
then

x=+=y.
Proof. Use 5.4 and 5.6.

5.10 THeoOReEM. If Relation + R,
0#x={u:(u,a)€ R},
0#y={u:(u,b)E R},
z={u:(u,a+b)E R},
then

x+ty=2z
Proof. Use 5.5, 5.6, and 5.7.

5.11 Lemma. If Relation + R, s € domain R, t € domain R, and
(s—tt—1t)ER then

(s,t)ER.
Proof. Evidently, because of 5.6,
(s—t+tt—t+t)ER, (s+t—tt)ER.

Also, by 5.6 and 5.3,
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(s—s,t—t)ER, (s+s—s,s+t—t)ER,
(s,s+t—t)ER.

Consequently, by transitivity,
(s,t)ER.

5.12 THEOREM. If Relation + R and bEy=+=x=
{u: (u,a) € R} then

y ={u: (u,b) € R}.

Proof. Assume
z={u:(u,b)€ R}

and divide the rest of the proof into 3 parts.
Part 0. y Cdomain R.
Proof. If t € y then, helped by 5.2, 5.10, and 5.6, we see

t—t€y—y=x—x={u:(u,a—a)€E R},
(t—t,a—a)ER,
t —t € domain R,
t € grp(t —t) Cdomain R,
t € domain R.

Part 1. yCz
Proof. Assume t € y. Using Part 0, 5.3.0, and 5.11 we see

t—b€y—y=x—x={u:(u,a—a)€E R},
(t—b,a—a)ER,
(t—bb—b)ER,

(t,)ER,
tE z

Part 2. = z.

Proof. Use 5.9 and 4.5.
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5.13 ConNJEcTURE. If Relation"R, bey=+=x=
{u:(u,a)€ R}, z ={u: (u, b) € R}, and

corresponding to each s and t in x Uy Uz
is such a w that
(w,t) ER and w—w=s5—35,
then
y =z
5.14 DerFINITION. Relation - R iff Relation + R and foreach s, ¢, u,

and v in domain R:

if (s5t)€ R and (u,v)ER then (s-ut-v)ER;

if (u,s-t)ER then, for some p and ¢

u=p-q, (p,s)ER, and (gq,t)ER.

5.15 Lemma. If Relation- R,
0#x={u:(u,a)€ R},
0#y={u:(ub)E R},
z={u:(u,a-b)E R},
then

X - y=az

5.16 THeOREM. If Relation- R,
0#x={u:(u,a)€ R},
0#y={u:(u,b)E R},
z={u:(u,a-b)E R},
then

X-y=z
Proof. According to 5.14, 5.9, and 5.15
x=+=y and x--y=2z

Now suppose

+=x and v=+=x

3
I
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and notethat0 # w and0# v. Assumec € w and d € v and use 5.12 to
see that

w={u:(u,c)€ R} and v={u:(u,d)E R}
and so, because of 5.15
w--v={u:(u,c-d)ER}

Because of this and 5.9

Now use 1.14.10.
5.17 THEOREM. If J is the unit interval,
D ={x: xis on J to kf},
R is the set of points of the form (x,y) where x € D and y € D and

x(t)=y(t) foralmostall t€J,
then

Relation - R.

Of course 5.10 and 5.16 apply. Here the equivalence classes are
Lebesgue classes of the coset type.

5.18 THEOREM. If J is the unit interval, and A consists of those
functions x for which

domain x CJ and range x Ckf,
R is the set of points of the form (x,y) where x EA and y € A and

x(t)—y(@)=0 for almost all t€J,
then

Relation - R.
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Again 5.10 and 5.16 apply but now the equivalence classes are
Lebesgue classes which are not of the coset type.

5.19 THEOREM. If P consists of those functions x for which
0Edomainx € U and range x CKf,

R is the set of points of the form (x,y) where x € P and y € P and

x(0) = y(0),
then
Relation - R.

Still again 5.10 and 5.16 apply but now each equivalence class has the
power of the universe.

6. Linear spaces.
6.0 DEFINITION. S is a linear space iff
S Creverted
and, for each x € S, each y € S, and each A € kf,
0-x=0-y, x+y€S, and A-x€ES.
6.1 THEOREM. S is a linear space iff

foreach x € S, eachy € S, each A € kf, and each u € kf,
0-x=0-y,
x+y€S,
Ax ES,
A+p)x=A-x+p-x

In connection with 6.1 recall 1.13, 2.1.4, 1.14.0 and 4.0.3. In mild
departure from custom we have insured that 0 is a linear space.

6.2 THEOREM. grp x is a linear space.
6.3 THEOREM. If S is a linear space and x € S then S Cgrp x.

6.4 THEOREM. If S is a linear space then S € U.
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It interests us that if £ Egrpx, n €Egrpx, € - m €grp x, then grp x is
a commutative ring.

6.5 REMARKS. Our linear spaces have a certain integrity. By a
lengthy set-theoretic argument it can be shown, for example, that if S isa
linear space and x € S then no point in range x belongs to S. Because of
this and §3 it is possible, with proper choice of x and y, for

(xy)

to consistently be either an instance of multiplication of scalars, or
function evaluation, or composition, or a rather general inner product, or
matrix multiplication, or the left application of a matrix to a vector, or the
right application of a matrix to a vector. The operation we here have in
mind is not universally associative.

We shall now be a bit more specific. If x and y are matrices and y
does not properly receive x then

(xy)=0.

If x is a function and y € domain x then (xy) is the value of x at y. For

convenience we agree that x is spanic iff x is a function, domain x is

included in some linear space, and domain x is not a subset of
{jEw:1=j}.

If x is spanic and y is a function for which y & domain x, and C is the
composition of x and y, then:

if C#0 then (xy)=C;
if C=0 then (xy)={(0,0)}.

If n € w and x and y are on

(Ew:1=j=n)}
then

(xy) = 2} (x; - yi)-
b=
It can easily happen here that

(xy)€ ~ kt.
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Because of the integrity of linear spaces it is easy to see that if x is spanic
and y is a function for which

range y N domain x # 0,
then (xy) is the composition of x and y. Since the domain of a matrix is

a relation, it follows from 4.0.9 that no matrix is spanic. We do not object
to the convention that

(xy = (xy)).
In this connection we note that if x =0 and y = 1, then
{xy}# {(xy); = {0}.
We wish also to point out that if a is a nonvacuous matrix then
0a=0#0-a.
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