Pacific Journal of Mathematics

ANOTHER MARTINGALE CONVERGENCE THEOREM

ANTHONY G. MUCCI

Vol. 64, No. 2

June 1976

ANOTHER MARTINGALE CONVERGENCE THEOREM

A. G. Mucci

A classical martingale theorem is generalized to "martingale like" sequences. The method of proof is a generalization of Doob's proof by "downcrossings".

Introduction. Let (Ω, B, P) be a probability space, $\{B_n\}$ an increasing sequence of sub sigma fields of B. Let $\{f_n, B_n, n \ge 1\}$ be an adapted sequence of P-integrable random variables.

The sequence is said to be a martingale in the limit if

$$\lim_{n\to\infty} \sup_{\bar{n}>n} |f_n - E(f_{\bar{n}} | B_n)| = 0 \qquad P \quad \text{a.e.}$$

If was proven in an earlier paper, Mucci [3] that every uniformly integrable martingale in the limit converges both L_1 and P a.e., generalizing the corresponding martingale theorem. The purpose of the present note is to prove that every L_1 -bounded martingale in the limit converges pointwise to an integrable random variable, thereby generalizing another classical martingale theorem. We recall that a sequence $\{f_n\}$ is said to be L_1 -bounded if $\sup_n \int |f_n| < \infty$.

THE THEOREM. Let $\{f_n, B_n, n \ge 1\}$ be an L_1 -bounded martingale in the limit. Then there exists $f \in L_1$ with $f_n \rightarrow f P$ a.e.

Proof. Fix a < b, two arbitrary real numbers. We define, following the classical proof:

 $\varphi(a, b)$ is the number of "downcrossings" of $\{f_n\}$ from above b to below a. Our objective will be to show that $P(\varphi(a, b) = \infty) = 0$ so that $P(\underset{n}{\lim} f_n \leq a < b \leq \underset{n}{\lim} f_n) = 0$, thereby determining that $f = \underset{n}{\lim} f_n$ exists almost everywhere, and since

$$\int |f| < \underline{\lim} \int |f_n| < \infty; \quad \text{that} \quad f \in L_1.$$

Our procedure consists in defining a "modified" number of downcrossings $\bar{\varphi}(a, b)$ and showing that $P(\bar{\varphi}(a, b) = \infty) = 0$ and further that, almost everywhere,

$$\bar{\varphi}(a,b) < \infty$$
 implies $\varphi(a,b) < \infty$.

We begin by defining a sequence of stopping times:

 $\tau_0 = 0.$

Now let $\{\alpha_n\}$ be a decreasing sequence of positive numbers with $\sum \alpha_n < \infty$, and let N be a fixed positive integer.

Define τ_{2n-1} as the first $m \leq N$ such that:

- (1) $m > \tau_{2n-2}$
- (2) $f_m > b$
- $(3) \quad \sup_{\bar{m}>m} |f_m E(f_m | B_m)| < \alpha_n.$

If no such *m* exists, set $\tau_{2n-1} = N$.

Likewise, define τ_{2n} as the first $m \leq N$ such that:

- (1) $m > \tau_{2n-1}$
- $(\overline{2}) \quad f_m < a$

(3)
$$\sup_{\bar{m}>m} |f_m - E(f_{\bar{m}}|B_m)| < \alpha_n.$$

If no such *m* exists, set $\tau_{2n} = N$. We have

$$\int f_{\tau_{2n-1}} - \int f_{\tau_{2n}} = \sum_{1}^{N} \int_{(\tau_{2n-1}=k)} (f_k - E(f_N \mid B_k)) + \sum_{1}^{N} \int_{(\tau_{2n}=k)} (E(f_N \mid B_k) - f_k) < 2\alpha_n.$$

Thus

(*)
$$\sum_{1}^{\infty} \int (f_{\tau_{2n-1}} - f_{\tau_{2n}}) < 2 \sum_{1}^{\infty} \alpha_n = 2\alpha.$$

We want an inequality in the other direction. Define

$$\bar{\varphi}(N, a, b) = \sum_{1}^{\infty} \left(I_{(f_{\tau_{2n-1}} \ge b)} \cdot I_{(f_{\tau_{2n}} \le a)} \cdot I_{(\sup_{m \ge 0} | E(f_{\tau_{2n}+m} | B_{\tau_{2n}}) - f_{\tau_{2n}} | < \alpha_n} \right)$$

the number of times we make a "downcrossing" subject to conditions (3), $(\overline{3})$ on our stopping times.

We have

$$\sum_{1}^{\infty} (f_{\tau_{2n-1}} - f_{\tau_{2n}}) \ge (b - a) \,\bar{\varphi}(N, a, b) - |b| - |f_N|.$$

Taking integrals, defining

$$\bar{\varphi}(a,b) = \lim_{N\to\infty} \bar{\varphi}(N,a,b),$$

and using Fatou's lemma and (*), we have

$$(**) \qquad \int \bar{\varphi}(a,b) < \frac{1}{b-a} \left[|b| + 2\alpha + \sup_{n} \int |f_{n}| \right] < \infty.$$

Therefore $P(\bar{\varphi}(a, b) < \infty) = 1$.

Let us now define

$$\Omega_0 = (\bar{\varphi}(a, b) < \infty) \cap \left(\lim_{n \to \infty} \sup_{\bar{n} > n} |f_n - E(f_{\bar{n}} | B_n)| = 0 \right)$$

Clearly $P(\Omega_0) = 1$ and we will be finished if we can show that $\varphi(a, b) < \infty$ on Ω_0 . Now, for a particular $\omega \in \Omega_0$, let $\overline{\varphi}(a, b) = M$. Suppose $\varphi(a, b) = \infty$.

Then we can find a sequence $\{n_k\}$ where $f_{n_{2k-1}} \ge b$, $f_{n_{2k}} \le a$ and where (3), (3) hold. This contradicts $\overline{\varphi}(a, b) = M$.

COROLLARY 1. Let $\{f_n, B_n, n \ge 1\}$ be a martingale in the limit, and let $r \ge 1$. Then there exists $f \in L_r$ such that $f_n \to f$ both P a.e. and in the L_r -norm $\Leftrightarrow \{|f_n|^r\}$ is uniformly integrable.

Proof. If $\{|f_n|'\}$ is uniformly integrable, then $\{f_n, B_n\}$ is L_1 -bounded, hence $f_n \to f P$ a.e. The rest follows by the usual classical arguments. (See Neveu, p. 57.)

COROLLARY 2. Let $s_n = \sum_{i=1}^{n} \xi_k$ where $\{\xi_k\}$ is an independent sequence. Then $s_n \rightarrow s \in L_1$ both P a.e. and L_1 provided $\{s_n\}$ is Cauchy in the L_1 -norm.

Proof. The Cauchy condition is equivalent to $\{s_n, B_n, n \ge 1\}$ being a martingale in the limit (here $B_n = \sigma(\xi_1 \cdots \xi_n)$). Further,

$$\sup_{n}\int |s_{n}|\leq \int |s_{M}|+\sup_{n\geq M}\int |s_{n}-s_{M}|<\infty.$$

References

1. L. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., 35 (1970), 279–283.

2. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden Day (1965).

3. A. G. Mucci, Limits for martingale-like sequences, Pacific J. Math, 48 (1973), 197-202.

4. R. Subramanian, On a generalization of martingales due to Blake, Pacific J. Math., 48 (1973), 275–278.

Received July 28, 1975 and in revised form January 13, 1976.

UNIVERSITY OF MARYLAND

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105

J. Dugundji

F. WOLF

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed). double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

> Copyright © 1976 Pacific Journal of Mathematics All Rights Reserved

Pacific Journal of Mathematics Vol. 64, No. 2 June, 1976

Richard Fairbanks Arnold and A. P. Morse, <i>Plus and times</i>	297
Edwin Ogilvie Buchman and F. A. Valentine, <i>External visibility</i>	333
R. A. Czerwinski, Bonded quadratic division algebras	341
William Richard Emerson, Averaging strongly subadditive set functions in unimodular amenable groups. II	353
Lynn Harry Erbe, Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations	369
Kenneth R. Goodearl, <i>Power-cancellation of groups and modules</i>	387
J. C. Hankins and Roy Martin Rakestraw, <i>The extremal structure of locally compact convex sets</i>	413
Burrell Washington Helton, <i>The solution of a Stieltjes-Volterra integral</i> equation for rings	419
Frank Kwang-Ming Hwang and Shen Lin, <i>Construction of 2-balanced</i> (n, k, λ) arrays	437
Wei-Eihn Kuan, Some results on normality of a graded ring	455
Dieter Landers and Lothar Rogge, <i>Relations between convergence of series</i> and convergence of sequences	465
Lawrence Louis Larmore and Robert David Rigdon, <i>Enumerating</i>	
immersions and embeddings of projective spaces	471
Douglas C. McMahon, On the role of an abelian phase group in relativized	
problems in topological dynamics	493
Robert Wilmer Miller, <i>Finitely generated projective modules and</i> TTF	
classes	505
Yashaswini Deval Mittal, A class of isotropic covariance functions	517
Anthony G. Mucci, Another martingale convergence theorem	539
Joan Kathryn Plastiras, <i>Quasitriangular operator algebras</i>	543
John Robert Quine, Jr., <i>The geometry of</i> $p(S^1)$	551
Tsuan Wu Ting, <i>The unloading problem for severely twisted bars</i>	559