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Let M be a compact space, and X a complete sparable
metric space. Let P(X) denote the probability measures on
X. Let 2 be a probability measure on M. Define a function

¢ from C(M, P(X)) to P(X) by oT)f)= ST(t)(f)dl(t) for

every TeC(M, P(X)), feC(X). We show that ¢; is an open
mapping.

1. Introduction. By a measure on a space X, we mean a
regular Borel measure on X. A nonnegative measure is called a
probability measure if its total mass is 1.

Let M be a compact space, and let X be a complete separable
metric space. Let P(X) denote the collection of all probability
measures on X. Let C(X) denote the set of all bounded continuous
real-valued functions on X. Give P(X) the weak topology as func-
tionals on C(X). Let C(M, P(X)) denote the set of all continuous
functions from M into P(X). Give C(M, P(X)) the topology of uni-
form convergence. Let )\ be a fixed probability measure on M. For
each TeC(M, P(X)), define a functional @,(T) on C(X) by

PATNS) = |TOF)INMD) -

By [3, p. 35 and p. 47], #, (T') may be considered as a measure in P(X).
Write o(T) = ST(t)dx(t). Denote the mapping T — @(T) by @..
Then ¢, is a continuous function from C(M, P(X)) into P(X). This
paper is to show that @, is an open mapping. This result contains
a result due to Eifler [2, Theorem 2.4] as a special case when M
consists of two points.

For a metric space X, we write z, —x if (x,)7., converges to «
in X.

ACKNOWLEDGMENT. The author wishes to thank Professor Robert
M. Blumenthal for his suggestion of this problem and for his in-
valuable suggestion for the idea of the proof of (B) in Theorem 3.1.

2. Basic lemmas. We will use the following notation in Lemma
2.1: Let X and Y be complete separable metric spaces, and 7: Y— X
a continuous function. Then 7 induces a mapping also denoted by
7, from P(Y) to P(X) and defined by wi(E) = (z (E)).
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LemMmA 2.1. Let X be o complete separable metric space. Then
there exist a totally disconmected complete separable metric space G,
a continuous function P: G— X, and a continuous function @: P(X)—
P(G) such that (1) = ¢t for all pe P(X). Moreover, @ is affine:

Flap + 1 — a)) = ad(p) + (1 — a)P(v)

for every 0 < a <1, and measures t, v P(X).
Proof. Such a space G is constructed by using a sequence
(F,)z-, of partitions of unity on X having the property that each

F, is subordinate to a cover of diameter less than 1/n. The details
of its construction can be found in [1].

Let X be a totally disconnected complete separable metric space.
Consider sets of the form

M.(G, -, G,) = {re P(X): |¥(G)) — UG)| < ¢
for e =1, ---, n}

(*)

where ¢ > 0, e P(X), and G, G,, ---, G, are mutually disjoint, both
open and closed subsets of X such that Jr, G, = X.

LEMMA 2.2. The collection of sets of the form (*) is a base for
the topology on P(X).

Proof. For any open subset U of X, let
N, (U)y={veP(X):v(U)+e>p(U)}.

Since sets of the form N, .(U) is a sub-base for the topology on
P(X), it suffices to show that

N/l,E( U) ﬂ M#,E(Glr ct Ty Gn)
contains a set of the form (*). Let V < U be a both open and closed

subset of X such that p#(V) + ¢/2 > (U). Then N, ., (V)< N,..(U),
and it is easy to check that

ﬁJll,E/zn(Gl N V, Ty Gn N V, Gl\Vv ] G%\V)
- NF,E/Z( V) N Mﬂ,s(Gly Y Gn) .
This completes the proof.

- 3. Main result.

THEOREM 3.1. Let M be a compact space, and let X be a complete
separable metric space. Let ) be a probability measure on M. Then
the function @;: C(M, P(X)) — P(X) defined by
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PAT) = | TyanD)
18 open.

Proof. The proof will be accomplished in two steps: (A) We
establish the result when X is totally disconnected. (B) We use (A)
to complete the proof.

(A) Let X be a totally disconnected complete separable metric
space. Let TeC(M, P(X)), and let %, be a neighborhood of 7. It
suffices to show that ¢,(Z) is a neighborhood of ®,(T). By Lemma
2.2, we may take %/, to be a set of the form:

Ur=1SeCM, P(X)): S(M)< 7;, for i=1, ---, m)

where for each 4, M, is a compact subset of M, and ¥; is a basic
open subset of P(X) of the form:

%.:{0eP(X):|0(G”)—01(G”)‘<5, for j:l’ tt nz}

where 6,€ P(X) and {G,;:5=1, ---, »,} is an open cover for X con-
sisting of mutually disjoint open subsets of X.

Let & Dbe the collection of all nonempty subsets U of X such
that U= G; NGy, N -+ NG,;,. Writee ={U, ---, U,}). Then %
is an open cover for X and U, NU; = @ if ¢ # J.

Since each G,; is both open and closed, we have

0 = Max l\tdaIxJ TENG,;) — 0.(G,)] < ¢
ij eM;
Let ¢, =¢ — 0 > 0. One sees immediately that if SeC(M, P(X)) is
such that Max,., |SE)NG.;) — TtXG.;)] < & for all 4, j, then Se Z7.

Let p = ST(t)dx(t), and @, = M(U),1<i=n. Then Sa =1
and we may assume that ¢, > 0. Let N be an integer such that
N-a, > n* whenever a, > 0,1 <1 =< n. Define

7={ve PX): |W(U,) — a,| <&2N for ¢=1,--- n}.

It suffices to show that @{Z,) 2 7-

Let yve 7. Then y=vy, + .-+ +v,, Where y, is a measure on X
defined as v{4A) = v(ANU,). Let b, =v(U,). Then |a, — b,| < &/2N,
and b, > 0 whenever a, > 0.

Now, go back to the function T. Let f,(t) = T(¢)(U,). Then all
fo1=1, .+, m, are continuous functions on M, and \f,(¢)d\() = a,.
We will construct continuous functions ¢, ---, g, on M such that

® o = o,
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(2) Max;.y|9:(t) — fit)| < &/n, and

(3) 0<g(t)<1and2,1g(t)—1forallt
Given ¢ =1, ---, » — 1, define g, as follows:

(a) If b, = a,, let g,(t) = fi(t) for all .

(b) If b, > a,, set 0,=b,—a, < &/2N. Let g,(t) = f:(t)+(0:/a,)f.(t).
Then,

fit) = 9.t) = fi(t) + (/2N -a,)f.u(t)
= fi®) + (e/207)1.(1) .

(¢) If b, <a, set 0, = aq, b < &/2N. Since a;, > 0, so that
b, > 0. Define h,(t) = 0, if fi(¢) < d,; h(t) = fi(¢) — 0, otherwise. Then

b, < Shi(t)dx(t) <a, Letbd, = Shi(t)dx(t) and g,(t) = (b,/b)k,(t). Then
9.(t) = fi(t) and

fi®) — 9:(t) = 0, + h,(t)(1 — b,/b)
<0, + &/2N-a, < g/n*.

Thus for 1 =1, -+, n -1, 0=g, =1, Sgi(t)dk(t) =b,, and
%%[X lgi(t) - fl(t)l < 80/7”/2 .

Moreover, g,(t) = fi(t) + (/20°)f.(t). Hence, g,(t) + -+ + g,,(t) =1
for all ¢. Let ¢g,(()=1—¢g,(t) — --- — ¢,_.(t). Then the functions
g, "+, 0, are as required. This completes the construction.

Now let I, J be subsets of {1, 2, ---, »} such that I = {i: b, > 0},
J =1{j:b; = 0}. For each jeJ, pick a measure «; c P(U;). Define a
continuous function S: M— P(X) by S(t)= "1 (g:(0)/b)v; + D5 9i(t)ex;.
Clearly,

2:(8) = 5,(1-29an o + 3 (Jos i)

iel

=2 ¥ =, and l\t&aMx [SENT,) — TENU) ] < &fn

for all 4. Since each G,; is a disjoint union of U,, it follows that
Max,., | SENG,;) — TENG,;)| < &. Therefore, Se Z. This completes
the proof of (A).

(B) Let X be a complete separable metric space. To show that
the mapping @, is open, it is equivalent to show the following: Let
TeCM, P(X)), and ¢ = @,(T). Let p, be a sequence converging
to ¢ in P(X). Then there is a sequence T, — T in C(M, P(X)) such
that @(T,) = t..

For this purpose, we use Lemma 2.1 to pick a totally disconnected
space G, continuous functions @:G— X and &: P(X)— P(G), such
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that p(¢) = p, and that ¢ is affine. Let f, = $¢,, = $p. Then
fi,— ff in P(G). Let T(t) = #T(t) for each t. Then TeC(M, P(G)).
It is easy to check that @,(T) = $@,(T). In fact, this is obvious if
there is a finite subset {t, ---, ¢} S M with A{¢, -+, ¢t,} =1. In
general, we may pick a net \,— X\ in P(M) such that for each «,
Mo(F,) = 1 for some finite subset F, of M. Thus, @, (T) = op, (T).
Let @ — o, then we obtain

o T) = ppiT) .
Hence 9,(T) = fi. Since by (A), the function
P C(M, P(G)) — P(G)

is open, hence, we may pick T, — T in C(M, P(G)) such that %(Tn) =
Z.. Let T,(t) = ¢T (t). Then~ T,—@T =T in C(M, P(X)), and Ehe
same argument in proving @,(T) = $@(T) will give @(T,) = ep(T,).
Therefore,

@Z(Tn) = @ﬁn = /’en °

This proves (B), and so completes the proof of this theorem.

As a special case of Theorem 3.1, we let M = {1, 2} with the
discrete topology. We obtain Eifler’s result [2]:

COROLLARY 3.2. Let X be a complete separable metric space,
and let 0 <N < 1. Then the function

A P(X) X P(X) —— P(X)
defined by (1, v) — gt + (L — Ny s open.
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