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GENERALIZED DEDEKIND ¢-FUNCTIONS WITH
RESPECT TO A POLYNOMIAL II

J. CHIDAMBARASWAMY

For a given polynomial f = f(x) of positive degree with
integer coeflicients and for given positive integers u, v, and
t, the arithmetical function ¥%i(n) is defined and some of
its arithmetical properties are obtained in addition to its
average order. v%)(n) reduces to the function ¥, (n) studied
recently by D. Suryanarayana and v:%(n) to ¥v¥,(n) studied
more recently by the author.

Introduction. The Dedekind’s +-function

@) vy =59y (q, 1),
dn g d

#(n) being Euler’s totient function is well known. He used this func-
tion in his study of elliptic modular functions [4]. As generalizations
of this function, recently D. Suryanarayana [8] defined and studied
the functions ¥,(n), ¥(n) and +(n) all giving the function (n)
for k =1. The functions ¥ (n) and +.(n) are defined respectively
(see [8]) as the Dirichlet’s convolution of a certain function with
Klee’s [6] totient function and as a sum similar to (1.1) using Cohen’s
[3] totient function, while +r,,(n) is defined as a multiplicative func-
tion whose values at prime powers p* are given by

& -1
(1.2) V(D9 = 2, <k . >q/r(p””j)
j=0 j
where for any nonnegative integers s and ¢
s\ ss—DD—-t+1) (s)
(1.3) (t>_ 1.2.3 .-t "o =1.

We recall the Dirichlet convolution (axb)(n) of the arithmetical func-
tions a(n) and b(n) is defined by

(1.4) (asb)(n) = 3 a(d)b(%) .

In [2], using totient function @{)(n), (see [1]; the notation for
O%i(n) is slightly different in [1]) f = f(x) being a given polynomial
of positive degree with integer coefficients, ¢ and % being given
positive integers, which includes as special cases when f(x) = « and
special values of & and ¢ all the familiar totient functions, the
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author defined and studied the functions Z¥)n) and +¥i(n) as

generalizations of ¥.(n) and +,(n) respectively and among other

things extended all the results in [8] regarding ¥',(n) and +,(n) to
¥ (n) and ¥¥i(n). In fact

i, Tdin)="un),
(1.5) ii, ¥(n) = P(n), and
iii, THn*) = ¥iin).
In this paper, we define an arithmetical function +%%n) which
includes as special cases not only the function (%) but also ¢{i(n)
(and hence also the function +,(n)). In §2, the function +¥}i(n) is

defined and all the results in [8] concerning +,(n) are extended to
this function and in §3 we obtain its average order subject to

(1.6) Nin) = 0(n%), 0<e< —11;

where Ni{n) is the number of solutions (mod n) of
.7 f(x) =0 (mod =) .

We note in passing that when f(x) = ¢, Nf{n) =1 and that (1.6)
is always satisfied if f(x) is a primitive integral polynomial with
descriminant == 0. (cf. Theorem 54 of [7]).

We need the following results about +¥,(n) which have been
obtained in [2].

i, ¥¥(n) is a multiplicative function of =

a8 i e = pfn 4 D)
D
o NIG)) o AN
i, fin) = nt 1 {1 + ———;)(kt } (2 #_(—ol;‘—~

where ¢(n) is the Mobius function and for any arithmetical function

g(n), g"(n) = (9(n))".
We shall use the symbol p*||#n to mean that p* is the highest
power of p that divides =.

2. For a given polynomial f and for given positive integers

u, v and ¢ we define the arithmetical function %3(n) as a multipli-
cative function whose values at prime powers p® are given by

2.1) 5i(0%) = Z,) (u ; )N”(p WD)

Clearly,
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(2.2) Pili(n) = ¥¥i(n)
and from (ii) of (1.5) for k=1 and (1.2)
(2.3) wi(n) = dw(n) .

Using (1.8), writing N for N/(p°), and observing

1
(i) 4+ (t i 1) = (i i 1) , Wwe get the r.h.s. of (2.1) is

a—1

— Z (u - 1>N.7't{p(a—j)vt + p(a—j—l)vtNt} + (u - 1)Nat
=\ g a

— pcwt + za" {(? - i’) + (u ; 1)}Nitp(a—i)vt

i( )N” a=ivt = for a >0

and is 1 for a = 0; consequently, we have since 4%n) is by defini-
tion multiplicative,

THEOREM 2.1.

win) = 11 {2( )Nﬂ(p Jptei }

%n (I

We observe that Theorem 2.1, (2.2), and the observations

(g) =0 for t > s give (3 of (2.18) of [2])

(2.4) P (n) = 0t {1 + N}(gk)}
In D
and Theorem 2.1 and (2.8) give (Theorem 8.3 of [8])

a [k )
(2.5) v = 11 3 (3 )172’3 .

p||n 7=0

We define the function p%¥;(n) as a multiplicative function whose
values at prime powers p® are given by

u
2.6) onip?) = (a)N;v(pw ,
so that,

@.7) oriln) = I (Z )N?‘(p“) :
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We note that

p%ln

k
(2.8) Oii(n) = 11 (a> = Pw(n) ;

the function o, (n) is defined in [8]. Furthermore, it is easily seen
that

1
(2.9) ovi(n) = TI (Q)N;‘(pk) — N .

»%lin

Since, by (2.6) and Theorem 2.1,

v

s ori@)(7)

d|p%

t P U ) .
=& (j )N}t(p”)'p(“‘”” = ¥i(p?)

and since two multiplicative functions which agree at prime powers
agree for all positive integers n, we have

THEOREM 2.2.
vt
Vi) = 3 0@ %) = (orion)(m)
din d
where the arithmetical function M. (n) is defined by

(2.10) A(n) = 0t

We note that Theorem 2.2, (2.2), and (2.9) give (3, of (2.18) of
[2])

(2.11) vE(n) = n* S Z(dggj(d")
din

and Theorem 2.2, (2.3) and (2.8) give (Theorem 3.9 of [8])

(2.12) Pio(n) =1 3, "—d(d—) :

THEOREM 2.3. For u =2
vrin) = (0 PE ") n) = (03" ri)(n) .
For the proof of Theorem 2.3, we meed

LEMMA 2.1. For u = 2,
prn) = (75" )m) = (0% *07)(n) .

Proof. The second equality is obvious since Dirichlet convolu-
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tion is commutative. To prove the first equality it is enough to
verify when n = p%, &« =0, » a prime. If o« = 0, both sides are 1
and if a > 0 by (2.6)

a -1 1 -1
5 enap(5) = (" e+ (1 e e
— —1
=" ) (2T ) = (e = e

and the proof of the lemma is complete.
We observe, Lemmas 2.1, 2.8, and (2.9) give (Theorem 3.12 of

(8D
— 2 n
(2.13) Pwln) = 3 s (), kz2.

Proof of Theorem 2.3. We first prove first equality. It is
enough to verify this when % = %, » a primeand « = 0. If @ =0,
both sides are 1 while if @ > 0

3, pudyrr (—) (by (2.9) and Theorem 2.1)

= 7AW (0%) + o)V (™)
w = ; . amt (o — 1Y\ o
0( j )Nf(p”)p‘“‘”” + Ni(ﬁ”)%( i )N}t(p”)p(“ i~ve

-1 u—1 , )
— pavt + Z {( ) + ( . )}N_}t(pv)p(a—g)vt
i—1 J

;( )N”(p T = i i(p)

Il
M D

[
Il

and the proof of the first equality is complete.
To complete the proof of the theorem, we have by Theorem 2.2
the associativity of Dirichlet convolution, and Lemma 2.1,

OF "5y = 05 % (075 N) = (057 % 0F5)* Ny
= (Of,t*)'vt = "/’f,t ’

and the proof is complete.
Theorem 2.3, (2.8), and (2.9) give Theorems 3.10 and 3.11 of [8]

(2.14) Pualn) = S @Dy %), kz2;

(2.15) Yw(n) = dzmp(k—l)(d)"/f<%> ’ E=2.
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3. We obtain in this section, the average order of +%in)
subject to (1.6).

LemmaA 3.1.

i, p¥in) =20 of n is not (w + 1) free

ii, priUn) < 2*™ N (7(n)) if n is u + l-free
where w(n) is the number of distinct prime factors of n and Y(n)
is the largest square free divisor of m.

Proof. If n is not u + 1-free, there is a prime p such that
p*lln, @ = wu + 1 and so Z) = 0 and hence (2.7) implies p%¥%n) = 0.

If n is u + 1-free, then p*|/ % implies @ < % and hence by (2.7),
using the facts that (n) =< 2* and Ng(n) is a multiplicative function

of n, we have
u
pritn) = I (Q)N;t(m < 2 N7 ()
2%l n

and the proof of the lemma is complete.
We also need the following elementary estimates

.’ = 0; gl;
1 %‘i | r> x
3.1) ii, Z—_O(x1 D, 0<r<1, r=1;

‘ILSZ

i, SL—o0@n, r>1, z=1.

n>z ’}’[/T

LeMMA 3.2. Under the hypothesis (1.6), >, 0¥ Un)/[n"* con-
verges and

(3.2) o= 3 LR ({1 + HIZDL,

vt+1 vi+1

Proof. If d(n) is the number of divisors of %, we have (cf.
Theorem 315 of [5]) d(n) = 0(n’) for every 6 > 0 and hence

2uetm — (2°™y < (d(n))* = 0(n*’) for every 6 >0,

where the constant in the O-relation depends on # but not on .
Now, (1.6) and Lemma 3.1 give

3.3) o) = Oy ,

where the constant in the O-relation is independent of n. Hence
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(8.4) prin) _ 0( 1 ) .

nrEt n' + vt(l — ue) — ub

The first part of the lemma is clear since by (1.6) 1 — ue > 0 and
we can choose § so small that

(3.5) vl — ue) —ub > 0.

Since p¥in)/n"* is multiplicative we can express the sum of
the series as an infinite product of Fuler type and so we have

Z pFUn) i { i P?I?(pm)}

Pryuer) an—l m=0 (pm)vt+1

and this by (2.6) and the fact <Z> =0 for @ > u is

=11 {é‘ow}

()"
=11 {1 + Nip’ )}

P pvt+1

and the proof of Lemma 3.2 is complete.

THEOREM 8.1. Under the hypothesis (1.6),

2 viin) = ¢

E
vt+1+ @)

where

E(x) = 0(x*) if vt — ue)>1
vE(1l — ue)
u

= O(z 04wty for every 6 <
of vt — ue) < 1.

Proof. We have by Theorem 2.2,
i) = 3 3 enidp
=3 pRUd)™ = 3 p?:?(d)‘;;.ma“

and this by 4, of (8.1) is

ze @ (G) oG

which by Lemma 8.2 is equal to
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va—l

vi+ 1

(3.6) o + 0(90““ 5 ﬂf-—(’f”l) + o(w 5 Pf_@_)> .

n>z ,nvt-H nsx n

Let 0 > 0 be so chosen that

37 {uﬁ <ol —ue) — 1, if \vt(l —ue) >1

ufd < vt(1 — ue), if vl —ue)=1.

In any case wf < vt(1 — ue). By (3.4) and (iii) of (3.1),
OFHm) _ 1 )
SR = o 5

— O(x—vt(l—ue)+u0)

and so, the second term in (3.6) is O(x'**/+wwte),
Similarly,

u:v(n . 1
and hence the third term in (3.6) is 0(z"*) or O(x'**/*****) according as
vE(1l — ue) > 1 or vi(l — ue) < 1. Since uf < vt(1 — ue) — 1 implies
1 + uf + uvte < vt, the theorem is clear. Clearly, Theorem 3.1 can
be stated as

THEOREM 3.1. Under the hypothesis (1.6), the average order of
PrYUn) 1s en’t, where ¢ is given by (3.2).

Since Y ,(n) = ¥=i(n), N,(n) =1, the r.h.s. of (3.2) in this case
is

T R .

being the Riemann’s {-function, and so from Theorem 3.1, we have
COROLLARY 3.1.1. (Theorem 4.4 of [7].)
The average order of +,(n) is w({*(2)/(*(4)) = n(15/7%)".
Similarly, Theorem 3.1, (2.2) and (2.9) give

COROLLARY 3.1.2. ((3.5) of [2].)

The average order of ¥.(n) is {Sio-: (L(R)NH(n?)/n*+1)ink.
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