Pacific Journal of Mathematics

THE DUNFORD-PETTIS PROPERTY FOR CERTAIN UNIFORM ALGEBRAS

FREDDY DELBAEN

Vol. 65, No. 1

September 1976

THE DUNFORD-PETTIS PROPERTY FOR CERTAIN UNIFORM ALGEBRAS

F. Delbaen

A Banach space B has the Dunford-Pettis property if $x_n^*(x_n) \to 0$ whenever $x_n \to 0$ weakly and the sequence x_n^* tends to zero weakly in B^* (i.e. $\sigma(B^*, B^{**})$). Suppose now that A is a uniform algebra on a compact space X. If ϕ is a nonzero multiplicative linear functional on A then M_{ϕ} is the set of positive representing measures of ϕ . If A is such that a singular measure which is orthogonal to A must necessarily be zero and if all M_{ϕ} are weakly compact sets then the algebra A as well as its dual have the Dunford-Pettis property.

The idea of the proof is that A^* the dual of A can be decomposed into components for which the results of Chaumat [1] and Cnop-Delbaen [2] can be applied. The fact that an l_1 sum of Dunford-Pettis spaces is also a Dunford-Pettis space then gives the result. In paragraph two some conditions ensuring the weak compactness of M_{ϕ} are given. These conditions are related to those used in the definition of core and enveloping measures (see [6]).

1. Notation and preliminaries. X will be a compact space, $A \subset \mathscr{C}(X)$ a closed subalgebra of the space of continuous complexvalued functions on X. The algebra A is supposed to contain the constants and to separate the points of X. The spectrum M_A is the set of all nonzero multiplicative linear functionals on A. If $\phi \in M_A$ then M_{ϕ} is the set of all positive measures on X representing ϕ , i.e.

$$M_{\phi} = \left\{ \mu \in M(X) \mid \mu \geqq 0 ext{ and } orall f \in A ext{ we have } \phi(f) = \int f d\mu
ight\}.$$

As well known M_{ϕ} is a convex set, compact for the topology $\sigma(M(X), \mathscr{C}(X))$. We say that two multiplicative linear forms ϕ and ψ belong to the same Gleason part if $||\phi - \psi|| < 2$ in A^* , the dual of A. It is well known that being in the same Gleason part is an equivalence relation and hence $M_A = \bigcup_{x \in \Pi} \pi$ where Π is the set of all Gleason equivalence classes. For more details and any unexplained notion on uniform algebras we refer to [6].

If E is a Banach space then E has the Dunford-Pettis property if $e_n^*(e_n) \to 0$ whenever $e_n \to 0$ weakly and $e_n^* \to 0$ weakly (i.e. $\sigma(E^*, E^{**})$).

For more details and properties of such spaces see Grothendieck

[4] or [5], where it is also proved that L^1 spaces and $\mathscr{C}(X)$ spaces have the Dunford-Pettis property.

2. Weak compactness of M_{ϕ} . We investigate under what conditions M_{ϕ} is weakly compact. First we remark that if ψ and ϕ are in the same Gleason part then there is an affine isomorphism linking M_{ϕ} and M_{ψ} , see [6, p. 143]. It follows that M_{ϕ} is weakly compact (i.e. $\sigma(M(X), M(X)^*)$) if and only if M_{ψ} is weakly compact. Moreover if m_{ϕ} is dominant in M_{ϕ} and m_{ψ} is dominant in M_{ψ} then m_{ϕ} is absolutely continuous with respect to m_{ψ} . (The existence of a dominant measure in M_{ϕ} is given by [3, p. 307].)

LEMMA. If ϕ is an element of M_A then following are equivalent 1. M_{ϕ} is weakly compact.

2. If u_n is a sequence of continuous functions on X such that $1 \ge u_n \ge 0$ and $u_n \to 0$ pointwise then there is a subsequence n_k and functions $v_k \in A$ such that $\operatorname{Re} v_k \ge u_{n_k}$ and $\phi(v_k) \to 0$.

3. If u_n is a sequence of continuous functions on X such that $1 \ge u_n \ge 0$ and $u_n \to 0$ pointwise then there is a subsequence n_k and functions $g_k \in A$ such that $|g_k| \le e^{-u_n k}$ and $\phi(g_k) \to 1$.

Proof. (1) \Rightarrow (2) If M_{ϕ} is weakly compact and u_n is a sequence as in (2) then $\sup_{\mu \in M_{\phi}} \int u_n d\mu \rightarrow 0$ (see [4]). Hence if ε_n is a sequence of strictly positive numbers tending to zero then $\exists v_n \in A$ such that Re $v_n \geq u_n$ and $\phi(v_n) \leq \sup_{\mu \in M_{\phi}} \int u_n d\mu + \varepsilon_n$ (see [6 p. 82]). Clearly $\phi(v_n) \rightarrow 0$.

(2) \Rightarrow (3) Write $g_k = e^{-v_k}$ and observe that $|g_k| = e^{-\operatorname{Re} v_k} \leq e^{-u_{n_k}}$ and $\phi(g_k) = e^{-\phi(v_k)} \rightarrow 1$.

(3) \Rightarrow (1) If M_{ϕ} is not weakly compact then following [4] there is a sequence of functions $u_n \in \mathscr{C}(X)$ and a sequence of measures $\mu_n \in M_{\phi}$ as well as $\varepsilon > 0$ such that

(i) $0 \leq u_n \leq 1$ and $u_n \rightarrow 0$ pointwise

(ii) $\int u_n d\mu_n > \varepsilon.$

Let now \tilde{g}_k be as in (3) then

$$|\phi(g_k)| \leq \int |g_k| \, d\mu_{n_k} \leq \int e^{-u_{n_k}} d\mu_{n_k} \leq 1 - rac{e-1}{e} \int u_{n_k} d\mu_{n_k} \leq 1 - rac{e-1}{e} arepsilon$$

and this contradicts $\phi(g_k) \rightarrow 1$.

REMARK. The conditions (2) and (3) are of course related to the conditions of being enveloped and being a core measure. The dif-

ference is that the sequence u_n is supposed to be uniformly bounded.

COROLLARY. If A satisfies one of the following conditions then for all $\phi \in M_A$, M_{ϕ} is weakly compact.

(1) If $1 \ge u_n \ge 0$; $u_n \in \mathscr{C}(X)$ and $u_n \to 0$ pointwise then there is a subsequence n_k and $v_k \in A$ such that v_k are uniformly bounded, Re $v_k \ge u_{n_k}$ and $v_k \to 0$ on X.

(2) If $1 \ge u_n \ge 0$; $u_n \in \mathscr{C}(X)$ and $u_n \to 0$ pointwise then there is a subsequence n_k and $g_k \in A$ such that $|g_k| \le e^{-u_{n_k}}$ and $g_k \to 1$ on X.

3. The D.P. property for some uniform algebras. In the following theorem we say that a measure ν is singular to A if for all ϕ and all $\mu \in M_{\phi}$, the measure ν is singular with respect to μ .

THEOREM. A has the Dunford-Pettis property if (1) for all $\phi \in M_A$, the set M_{ϕ} is weakly compact, (2) if λ is orthogonal to A and λ is singular to A then $\lambda = 0$.

Proof. Of course we only have to prove that A^* has the D.P. property, since it follows from the definition that a Banach space is a Dunford-Pettis space as soon as its dual is a Dunford-Pettis space. We first prove the following lemma.

LEMMA. If $(E_{\beta})_{\beta \in B}$ is a family of Banach spaces all having the D.P. property and if

$$\left(\sum\limits_{eta} \bigoplus E_{eta}
ight)_{l_1} = E = \left\{e = (e_{eta})_{eta \, \epsilon \, B} \, | \, e_{eta} \in E_{eta}; \sum\limits_{eta} || \, e_{eta} \, || = || \, e \, || < \infty
ight\}$$

then E has the D.P. property.

Proof. $\forall \beta$ let $P_{\beta}: E \rightarrow E_{\beta}$ be the canonical projection.

Let $e_n \in E$ such that $e_n \to 0$ weakly and $||e_n|| \leq 1$; $e_n^* \in E^*$ such that $e_n^* \to 0$ weakly and $||e_n^*|| \leq 1$; $P_\beta e_n = e_{n,\beta}$; $P_\beta^* e_n^* = e_{n,\beta}^*$; $t_{n,\beta} = e_{n,\beta}^*(e_{n,\beta})$.

Only a denumerable part of the numbers $t_{n,\beta}$ can be different from zero so we can take B = N. We first prove that the sum $e_n^*(e_n) = \sum_{\beta} t_{n,\beta}$ converges uniformly in n, i.e.

(*) for all $\varepsilon > 0$ there is N such that $\forall n$ we have $\sum_{\beta > N} |t_{n,\beta}| < \varepsilon$. If this is not the case then we start a well-known procedure. Let $\varepsilon > 0$ be such that (*) does not hold for this ε , take $\delta_n > 0$ such that $\sum_{n=1}^{\infty} \delta_n \leq \varepsilon/4$. Let $n_1 = 1$, $N_0 = 0$, N_1 such that $\sum_{\beta > N_1} ||e_{n_1,\beta}|| \leq \delta_1$.

Since $e_{n,1}, \dots, e_{n,N_1} \to 0$ weakly we can find \overline{n}_2 such that for all $n \ge \overline{n}_2 \ge n_1$ we have $\sum_{\beta=1} |e_{n,j}^*(e_{n_1,j})| \le \delta_2$. Let now $n_2 \ge \overline{n}_2$ be such

F. DELBAEN

that $\sum_{\beta>N_1} |t_{n_2,\beta}| > \varepsilon$ and $N_2 > N_1$ such that $\sum_{\beta>N_2} ||e_{n_2,\beta}|| \le \delta_2$. Continuing this procedure we find two strictly increasing sequences (n_k, N_k) such that

$$\begin{array}{ll} (1) & \sum_{\beta>N_k} || \, e_{n_k,\beta} \, || \leq \delta_k \\ (2) & \forall n \geq n_k \text{ the sum } \sum_{\beta=1}^{N_{k-1}} |e_{n,j}^{\star}(e_{n_{k-1},\beta})| \leq \delta_k \\ (3) & \sum_{\beta>N_{k-1}} |t_{n_k,\beta}| > \varepsilon. \end{array}$$

Let now

$$e^* = (\gamma_1 e^*_{1,1}; \cdots; \gamma_{N_1} e^*_{1,N_1}; \gamma_{N_1+1} e^*_{n_2,N_1+1}; \cdots; \gamma_{N_2} e^*_{N_2}; \gamma_{N_2+1} e^*_{n_3,N_2+1}; \cdots)$$

where γ_{β} is such that if $N_{k-1} + 1 \leq \beta \leq N_k$ then $\gamma_{\beta} e^*_{n_k,\beta}(e_{n_k,\beta}) = |t_{n_k,\beta}|$. Clearly $e^* \in E^*$ and $||e^*|| \leq 1$. For all $k \geq 2$

$$e^{st}(e_{n_k}) = \sum\limits_{j=1}^{k-1} \sum\limits_{eta = N_{j-1}+1}^{N_j} \gamma_{eta} e^{st}_{n_j,eta}(e_{n_j,eta}) \ + \sum\limits_{eta = N_{k-1}+1}^{N_k} | \, t_{n_k,eta} \, | \ + \sum\limits_{eta > N_k} \gamma_{eta} e^{st}_{eta}(e_{n_k,eta}) \, .$$

So

$$egin{aligned} |\,e^*(e_{n_k})\,| &\geq -\sum\limits_{j=1}^{k-1} \delta_j + \sum\limits_{eta=N_{k-1}+1}^{N_k} |\,t_{n_k,\,eta}\,| - \delta_k \ &\geq -\sum\limits_{j=1}^k \delta_j + \sum\limits_{eta>N_{k-1}} |\,t_{n_k,\,eta}\,| - 2\delta_k \ &\geq arepsilon - 2\sum\limits_{j=1}^\infty \delta_j \geq arepsilon/2 \;. \end{aligned}$$

But this contradicts $e_{n_k} \to 0$ weakly. This proves that (*) is verified and hence $\lim_{n\to\infty} \sum_{\beta} t_{n,\beta} = \sum_{\beta} \lim t_{n,\beta} = 0$, since each of the E_{β} has the D.P. property.

REMARK. If $E_n = l_2^n$ (i.e. the *n*-dimensional Hilbert space) then $E = (\Sigma \bigoplus E_n)_{l_1}$ has the D.P. property but E^* has not, because as easily seen, the space E^* has a complemented subspace isometric to l_2 , this contradicts D.P. (see [4]).

Proof of the theorem. For each $\pi \in \Pi$ we select $\phi_{\pi} \in \pi$ and $m_{\pi} \in M_{\phi}$ dominant. By [6 p. 144] all m_{π} are mutually singular. Select now probability measures $(m_{\beta})_{\beta \in B}$ such that $\{m_{\pi} \mid \pi \in \Pi\} \cup \{m_{\beta} \mid \beta \in B\}$ is a maximal farmily of mutually singular measures. (This can be done using Zorn's lemma.) An application of the Radon-Nikodym theorem yields:

$$M(X) = \mathscr{C}(X)^* = (\sum\limits_{lpha \in I/ \cup B} \bigoplus L^{\iota}(m_lpha))_{l_1}$$
 .

For each π define N_{π} as the set $\{\pi \in L^1(m_{\pi}) \mid \mu \perp A\}$. The abstract F. and M. Riesz theorem [6] and hypothesis 2 give that

$$A^{\scriptscriptstyle \perp} = \left(\sum_{\pi \, \in \, II} \bigoplus N_{\pi}
ight)_{l_1}$$

and hence

$$A^* = \left(\sum\limits_{\pi \, \in \, II} \, \oplus \, L^{\scriptscriptstyle 1}(m_\pi)/N_\pi
ight)_{l_1} \oplus \left(\sum\limits_{\beta \, \in \, B} \, \oplus \, L^{\scriptscriptstyle 1}(m_eta)
ight)_{l_1}.$$

In [2] and [1] it is proved that the spaces $L^1(m_x)/N_x$ have the Dunford-Pettis property. By the preceding lemma and Grothendieck's result that an L^1 space is a Dunford-Pettis space we have that A^* has the D.P. property.

REMARK. (1) If $D = \{z \mid |z| < 1\}$ and A is the so-called discalgebra i.e. $A = \{f \mid f \text{ analytic on } D, \text{ continuous on } \overline{D}\}$ then A satisfies all requirements hence A and A^* have the D.P. property.

(2) If K is a compact set which is finitely connected then by Wilken's theorem R(K) satisfies hypothesis 2 and by [6, p. 145, paragraph 3], R(K) also satisfies hypothesis 1. Consequently R(K) as well as $R(K)^*$ have the Dunford-Pettis property.

References

1. Chaumat, Une généralisation d'un théorème de Dunford-Pettis, (preprint) Université Paris XI, Orsay, n° 95, 1974.

2. Cnop-Delbaen, A Dunford-Pettis theorem for $L^1/H^{\infty_{\perp}}$. (to be published) preprint Department of Mathematics, Vrije Universiteit Brussel, Belgium 1975.

3. Dunford-Schwartz, Linear Operators, Part I, Interscience, New York, 1958.

4. Grothendieck, Sur les applications linéalires faiblement compactes sur les espaces du type $\mathscr{C}(K)$, Canad. J. of Math., (1953), 129-173.

5. ____, Espaces Vectoriels Topologique, São Paulo, 1964.

6. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, 1969.

Received August 4, 1975 and in revised form November 20, 1975.

VRIJE UNIVERSITEIT BRUSSEL

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

R. A. BEAUMONT University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 65, No. 1 September, 1976

David Lee Armacost. Compactly cogenerated LCA groups	1
Sun Man Chang On continuous image averaging of probability measures	13
I. Chidambaraswamy, Generalized Dedekind ψ -functions with respect to a	10
polvnomial. II	19
Freddy Delbaen. The Dunford-Pettis property for certain uniform algebras	29
Robert Benjamin Feinberg <i>Faithful distributive modules over incidence</i>	_>
algebras	35
Paul Froeschl. <i>Chained rings</i>	47
John Brady Garnett and Anthony G. O'Farrell. Soboley approximation by a sum	
of subalgebras on the circle	55
Hugh M. Hilden, José M. Montesinos and Thomas Lusk Thickstun, <i>Closed</i>	
oriented 3-manifolds as 3-fold branched coverings of S^3 of special type	65
Atsushi Inoue. On a class of unbounded operator algebras	77
Peter Kleinschmidt. On facets with non-arbitrary shapes	97
Narendrakumar Ramanlal Ladhawala Absolute summability of Walsh-Fourier	2.
series	103
Howard Wilson Lambert Links which are unknottable by mans	109
Kyung Bai Lee. On certain g-first countable spaces	113
Richard Ira Loebl <u>A Hahn decomposition for linear maps</u>	110
Moshe Marcus and Victor Julius Mizel A characterization of non-linear	117
functionals on W^p possessing autonomous kernels. I	135
James Miller Subordinating factor sequences and convex functions of several	133
variables	159
Keith Pierce Amalgamated sums of abelian Larguns	167
Ionathan Rosenberg. The C*-algebras of some real and p-adic solvable	107
groups	175
Hugo Rossi and Michele Vergne. Group representations on Hilbert spaces defined	110
in terms of ∂_b -cohomology on the Silov boundary of a Siegel domain	193
Mary Elizabeth Schaps, <i>Nonsingular deformations of a determinantal</i>	
<i>scheme</i>	209
S. R. Singh, Some convergence properties of the Bubnov-Galerkin method	217
Peggy Strait, Level crossing probabilities for a multi-parameter Brownian	
process	223
Robert M. Tardiff, <i>Topologies for probabilistic metric spaces</i> .	233
Benjamin Baxter Wells, Jr., <i>Rearrangements of functions on the ring of integers of</i>	
a p-series field	253
Robert Francis Wheeler, <i>Well-behaved and totally bounded approximate identities</i>	
for $C_0(X)$	261
Delores Arletta Williams, Gauss sums and integral quadratic forms over local	
fields of characteristic 2	271
John Yuan, On the construction of one-parameter semigroups in topological	
semigroups	285