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A Banach space B has the Dunford-Pettis property if
%n{%n) —• 0 whenever xn -> 0 weakly and the sequence x* tends
to zero weakly in B* (i.e. σ(B*9 5**)). Suppose now that A
is a uniform algebra on a compact space X. If φ is a nonzero
multiplicative linear functional on A then Mφ is the set of
positive representing measures of φ. If A is such that a
singular measure which is orthogonal to A must necessarily
be zero and if all Mψ are weakly compact sets then the algebra
A as well as its dual have the Dunford-Pettis property.

The idea of the proof is that A* the dual of A can be decom-
posed into components for which the results of Chaumat [1] and
Cnop-Delbaen [2] can be applied. The fact that an lγ sum of Dunford-
Pettis spaces is also a Dunford-Pettis space then gives the result.
In paragraph two some conditions ensuring the weak compactness
of Mφ are given. These conditions are related to those used in the
definition of core and enveloping measures (see [6]).

1* Notation and preliminaries* X will be a compact space,
4 c ^ ( I ) a closed subalgebra of the space of continuous complex-
valued functions on X. The algebra A is supposed to contain the
constants and to separate the points of X. The spectrum MA is the
set of all nonzero multiplicative linear functionals on A. If φ e MA

then Mφ is the set of all positive measures on X representing
Φ, i.e.

Mφ = jμ e M(X) I μ ^ 0 and V/ e A we have φ(f) = ί fdμ\ .

As well known Mφ is a convex set, compact for the topology
σ(M(X), ^(X)). We say that two multiplicative linear forms φ
and ψ belong to the same Gleason part if \\φ — ψ || < 2 in A*, the
dual of A. It is well known that being in the same Gleason part
is an equivalence relation and hence MA — \}xeΠπ where Π is the set
of all Gleason equivalence classes. For more details and any un-
explained notion on uniform algebras we refer to [6].

If E is a Banach space then E has the Dunford-Pettis property
if e*(en) —> 0 whenever en —>• 0 weakly and el —+ 0 weakly (i.e.
σ(E*f E**)).

For more details and properties of such spaces see Grothendieck
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[4] or [5], where it is also proved that L1 spaces and ^(X) spaces
have the Dunford-Pettis property.

2* Weak compactness of Mφ. We investigate under what con-
ditions Mφ is weakly compact. First we remark that if ψ and φ
are in the same Gleason part then there is an affine isomorphism
linking Mφ and Mψ, see [6, p. 143]. It follows that Mφ is weakly
compact (i.e. σ(M(X), M(X)*)) if and only if Mψ is weakly compact.
Moreover if mφ is dominant in Mφ and mψ is dominant in Mψ then
mφ is absolutely continuous with respect to mψ. (The existence of
a dominant measure in Mφ is given by [3, p. 307].)

LEMMA. // φ is an element of MA then following are equivalent
1. Mφ is weakly compact.
2. // un is a sequence of continuous functions on X such that

1 ^ un ^ 0 and un—+0 pointwise then there is a subsequence nk and
functions vk e A such that Re vk ^ un]c and φ(vk) —+ 0.

3. // un is a sequence of continuous functions on X such that
1 J> un ^ 0 and un~^0 pointwise then there is a subsequence nk and
functions gkeA such that | gk | ^ e~u»k and φ(gk) —* 1.

Proof. (1) => (2) If Mφ is weakly compact and un is a sequence

as in (2) then sup \ undμ —> 0 (see [4]). Hence if εn is a sequence
μeMφ J

of strictly positive numbers tending to zero then lvn e A such that

Re vn ^ un and φ(vn) ̂  sup \ undμ + en (see [6 p. 82]). Clearly
μeMφ J

(2) =-(3) Write gk - β"v* and observe that \gk\ = e~^v^ ^ e~u*k
and (̂flrA) = e~φ{v^ -+1.

(3) => (1) If Mφ is not weakly compact then following [4] there
is a sequence of functions un e ^(X) and a sequence of measures
μn G Mφ as well as ε > 0 such that

( i ) 0 ^ un ^ 1 and %% —> 0 pointwise

(ii) \^undμn> ε.

Let now #*. be as in (3) then

\Φiΰk)I ^ 11 g»I di««fc ^ ( β — * ^ - t ^ i - ^ ^ S M . * ^ . * ^ i - — *
J J β J β

and this contradicts Φ(gk)—>1.

REMARK. The conditions (2) and (3) are of course related to the
conditions of being enveloped and being a core measure. The dif-
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ference is that the sequence un is supposed to be uniformly bounded.

COROLLARY. // A satisfies one of the following conditions then
for all φeMA, Mφ is weakly compact.

(1) // 1 :> un >̂ 0; un e ^(X) and un—>0 pointwise then there
is a subsequence nk and vke A such that vk are uniformly bounded,
Re vk ^ un]c and vk—+0 on X.

( 2 ) If 1 ^ un ^ 0; un e ^(X) and un-^0 pointwise then there
is a subsequence nk and gkeA such that | gk | ^ e~"nk and gk-+l
on X.

3* The D*P* property for some uniform algebras* In the fol-
lowing theorem we say that a measure v is singular to A if for all
Φ and all μeMφ, the measure v is singular with respect to μ.

THEOREM. A has the Dunford-Pettis property if
(1) for all φeMA, the set Mφ is weakly compact,
(2) ifXis orthogonal to A and λ is singular to A then X — 0.

Proof. Of course we only have to prove that A* has the D.P.
property, since it follows from the definition that a Banach space is
a Dunford-Pettis space as soon as its dual is a Dunford-Pettis space.
We first prove the following lemma.

LEMMA. If(Eβ)βeB is a family of Banach spaces all having the
D.P. property and if

= E= \e = (eβ)βeB\eβeEβ;Σ*\\eβ\\ = \\e\\< c

then E has the D.P. property.

Proof. V/9 let Pβ : E—>Eβ be the canonical projection.

Let eneE such that en—>0 weakly and | |β w | | ^ 1; e*ei?* such
that e*-»0 weakly and | | e * | | ^ l ; Pβen = eny, Pfet = e*,β; tn,β =

Only a denumerable part of the numbers tn>β can be different
from zero so we can take B = N. We first prove that the sum
e?(e«) = Έiβtn,β converges uniformly in n, i.e.

(*) for all ε > 0 there is N such that Vn we have Σβ>N \tn,β\ < e.
If this is not the case then we start a well-known procedure. Let
ε > 0 be such that (*) does not hold for this ε, take δn > 0 such
that Σϊ=i δn ^ ε/4. Let n, = 1, No = 0, N, such that Σiβ>N111 enι,β \\^δlm

Since en>1, , βΛlΛΓl—>0 weakly we can find n2 such that for all
n ^ n2 ^ nt we have J^=i I β?,i(β»i,i) I ̂  2̂ Let now n2 ^ ?ϊ2 be such
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that Σβ>Nl I tn2,β I > ε and iV2 > N, such that Σ/»*2 II e«2,β || ^ δ2. Con-
tinuing this procedure we find two strictly increasing sequences
(w*, JVlb) such that

( 1 ) Σβ>Nk\\enk,β\\^δk

(2)
(3)

Let now

where Ύβ is such that if
Clearly e* e E* and || e*

the sum ]
> ε.

2Lιβ=i
O^ A _ ^ ) | ^

i + 1 £ β ^ Nk then Ύβeik,β(enktβ) =

1. For all k ^ 2

: Σ Σ ^β^jtβ(en3 tβ)

So

+
+

> V

p = j Σ i 4

β>Nk

β

δj +

3

= Σ i + i

Σ

' •

« . ,

But this contradicts en]c-+0 weakly. This proves that (*) is verified
and hence limn_ooΣ/^n,/s = Σ/>lim*n,j8 = 0> since each of the Eβ has
the D.P. property.

REMARK. If En = It (i.e. the ^-dimensional Hubert space) then
E = (I' φ EΓ

7l)ίl has the D.P. property but E* has not, because as
easily seen, the space E* has a complemented subspace isometric to
ϊ2, this contradicts D.P. (see [4]).

Proof of the theorem. For each π e Π we select 0Λ e TΓ and mff e Mφ

dominant. By [6 p. 144] all mπ are mutually singular. Select
now probability measures (mβ)βeB such that {mπ \ π e 77} U {m̂  | /9 e J5}
is a maximal farmily of mutually singular measures. (This can be
done using Zorn's lemma.) An application of the Radon-Nikodym
theorem yields:

M(X) = = (
αe/iUΰ
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For each π define Nx as the set {π e L\mπ) \ μ ± A}. The abstract
F. and M. Riesz theorem [6] and hypothesis 2 give that

and hence

πeΠ Jlχ \βeB

In [2] and [1] it is proved that the spaces L\mϊ)\Nπ have the
Dunford-Pettis property. By the preceding lemma and Grothendieck's
result that an L1 space is a Dunford-Pettis space we have that A*
has the D.P. property.

REMARK. (1) If D = {z | | z \ < 1} and A is the so-called disc-
algebra i.e. A = {/1 / analytic on D, continuous on D} then A
satisfies all requirements hence A and A* have the D.P. property.

(2) If if is a compact set which is finitely connected then by
Wilken's theorem R{K) satisfies hypothesis 2 and by [6, p. 145,
paragraph 3], R(K) also satisfies hypothesis 1. Consequently R(K)
as well as R{K)* have the Dunford-Pettis property.
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