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In this paper strongly* o-metrizable spaces are introduced
and it is shown that a space is strongly* o-metrizable if and
only if it is semistratifiable and o-metrizable (or symme-
trizable); g-metrizable spaces are strongly* o-metrizable and
hence quotient 7-images of metric spaces. As what F. Siwiec
did for (second countable, metrizable and first countable)
spaces, we introduce g-developable spaces, and it is proved
that a Hausdorff space is g-developable if and only if it is
symmetrizable by a symmetric under which all convergent
sequences are Cauchy.

1. o-metrizable spaces. Let X be a topological space and d be
a nonnegative real-valued function defined on X x X such that
d(x, y) =0 if and only if = y. Such a function d is called an
o-metric [16] for X provided that a subset U of X is open if and
only if d(x, X —U)> 0 for each 2¢c U. An o-metric d is called a
strong o-metric [17] if each sphere S(x; r) = {ye X: d(x, y) < r} is a
neighborhood of x; a symmetric if d(x, ¥) = d(y, x) for each x and
y; a semimetric if d is a symmetric such that x e M if and only if
d(xz, M) = 0.

For a space X, let g be a map defined on N x X to the power-set
of X such that xeg(n, ) and g(n + 1, ) C g(n, ) for each n and
x; a subset U of X is open if for each x e U there is an n such that
g(n, z)cU. We call such a map a CWC-map (=countable weakly-
open covering map). Consider the following conditions on g:

(1) if z,eg(n, 2) for each n, the sequence {x,} converges to ,

(2) if xeg(n, x,) for each n, the sequence {x,} converges to z,
and /
(3) each g(n, z) is open.

Note that (1) is equivalent to: {g(n, x): n € N} is a local net at =z,
and (2) is equivalent to: {g*(n, ): m e N} is a local net at x, where
g*(m, x) is defined by z e g*(n, y) if and only if y ¢ g(n, ).

X is said to be g-first countable [1, 20] if X has a CWC-map
satisfying (1); first countable if X has a CWC-map satisfying (1)
and (3). Semaistratifiable spaces [8] are characterized by spaces
having CWC-maps satisfying (2) and (8); symmetrizable spaces [4]
by spaces having CWC-maps satisfying (1) and (2); semimetrizable
spaces [11] by spaces having CWC-maps satisfying (1), (2) and (3).

The following proposition may be found in [18], but we will
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give its proof for later use.

ProrOSITION 1.1. A space is o-metrizable if and only if it s
a g-first countable T.-space.

Proof. Let g be a g-first countable CWC-map for a space X.
Set d(x, y) = 1/inf {j:y ¢ g(J, x)}. A subset U of X is open if and
only if for each x € U, there exists an » = n(x) such that g(n, ) C U,
and hence g(n, ) N (X — U) = @, which is equivalent to d(z, X — U) =
1/n. Conversely, let d be an o-metric on X. Set g(n, x) = S(x; 1/n).
Then g is a g-first countable CWC-map.

Part of the following theorem appears in [18]. The remaing
part is easily verified using a similar technique to 1.1.

THEOREM 1.2. The following are equivalent:

(1) X is a first countable T,-space,

(2) X is o-metrizable by an o-metric under which all spheres
are open,

(8) X s o-metrizable by an o-metric d such that xwecM if
and only if d(x, M) =0, and

(4) X is strongly o-metrizable.

The following is a kind of dual character of strongly o-metrizable
spaces.

DEFINITION 1.8. A space X is said to be strongly* o-metrizable
if it has an o-metric d such that S*(z; r) ={ye X:d(y, x) <r} is a
neighborhood of x for each xe X and r > 0.

Ja. A. Kofner [13] proved that semistratifiable o-metrizable
spaces are symmetrizable. But symmetrizability is not a sufficient
condition for semistratifiability. In fact,

THEOREM 1.4. For an o-metrizable space X, the following are
equivalent:

(1) X is semistratifiable,

(2) X is symmetrizable and semistratifiable,

(3) X has an o-metric d such that each S*(x:7r) is open,

(4) X has an o-metric d such that d(M,x) =0 if xcM, and

(5) X is strongly* o-metrizable.

Proof. (1=2). See [13, Theorem 11].
(2=3). Let f, g be a symmetrizable, a semistratifiable CWC-map
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for X, respectively. Set h*(n, x) = Int (f(n, ) U g(n, x£)). Note that
Mn, x) C f¥(n, ) U g*(n, £). This implies that & is an o-metrizable
CWC-map (cf. Proposition 1.1) with an additional condition: each
h*(h, x) is open.

Now set d(x, ¥) = 1/inf {f e N: y ¢ (4, )}. By the proof of 1.1, d
is an o-metric for X. Futhermore, S*(x; 1/n) = h*(n, x), which is open.

(3=4). Let d be an o-metric for X such that each S*(x; r) is
open. If d(M,x)=1r >0, MN S*x:r) = @. This implies x ¢ M.

(4=05). Assume z¢Int S*(x; r) for some » > 0. This implies
that x ecl (X — S*(x; r)). Therefore, d(X — S*(x; r), ) = 0, which is
a contradiction.

(b=1). Let d be a strong* o-metric for X. Set g(n, x) =
Int S*(x; 1/n) for each n and x. Now it is easily shown that ¢ is a
semistratifiable CWC-map for X.

Note that strong o-metrizability and strong* o-metrizability are
independent. In fact, a space is semi-metrizable if and only if it is
strongly and strongly* o-metrizable.

COROLLARY 1.5. A g-metizable space [19] is strongly* o-metrizable.

Proof. A g-metrizable space has a o-cushioned pair-net, and
hence is semi-stratifiable [13 or 15]. Now apply 1.4.

A mapping f from a metric space X to a space Y is called a z-
mapping [19] if for each y € Y and each neighborhood U of y,

adf Ty, X — f70) > 0.

F. Siwiec posed a question ([20], 1.19): Is every g-metrizable
space a quotient m-image of a metric space? Ja A. Kofner answers
the question.

COROLLARY 1.6. FEwvery g-metrizable space is a quotient mw-image
of a metric space.

Proof. Kofner has shown that a strongly* o-metrizable space
has a symmetric satisfying the weak condition of Cauchy ([14],
Theorem 1), and hence is a quotient w-image of a metric space ([13],
Theorem 19). Now 1.5 completes the proof.

ExXAMPLE 1.7. (1) A countable M,-space which is not o-metrizable.
Example 9.4 of [6].

(2) A strongly* o-metrizable space which is neither semimetri-
zable nor g-metrizable. Let X be the space of Example 5.1in [9], Y a
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semimetrizable nonmetrizable space. The topological sum of X and Y.

(3) Example 1 in [14] is an example of a space possessing a
symmetric with the weak condition of Cauchy but which is not
strongly* o-metrizable.

2. g-developable spaces. Considering definitions of g-first coun-
table spaces, g-metrizable spaces and g-second countable spaces, sym-
metrizable spaces might be called g-semimetrizable spaces. (See the
characterization of symmetrizable spaces by means of CWC-maps in
§1.) Developable spaces are characterized by means of COC-maps
(=countable open covering maps) by Heath [11]: If 2, z,€g(n, ¥.)
for each n, then the sequence {z,} converges to . The g-setting of
developable spaces is the following.

DEFINITION 2.1. A space is g-developable if it has a CWC-map
g with the following property: If =z, x,<g(n, y,) for each n, the
sequence {x,} converge to x.

Let v = (7, 75, 75 --+) be a sequence of covers of a space X
such that v,,, refines v, for each n. Such a sequence is said to be
semi-refined [7] if {st(x, v,):xe X, ne N} is a weak base [1] for X.
Burke and Stoltenberg [4] shows that a T'-space has a semi-refined
sequence if and only if it is symmetrizable.

If X has a g-first countable CWC-map g such that v=(v,, 7, Vs *+ ),
where 7, = {g(n, x): x € X}, is a semi-refined sequence for X, then X
is g-developable. Conversely, let g be a g-developable CWC-map for
a space X. If we set v, ={g(n,x): x € X} for each n, Y = (7, Vo Vs, ***)
is a semirefined sequence for X. Thus, a g-developable space is
symmetrizable. F. Siwiec [20] proved symmetrizable spaces are
semimetrizable if they are Fréchet. The same proof says the
following.

PROPOSITION 2.2. A Hausdorff space is developable if and only
if it 18 g-developable and Fréchet.

As D. K. Burke [5] showed, every semimetric space can be semi-
metrizable by a semimetric under which every convergent sequence
has a Cauchy subsequence. Unfortunately, this is not true for sym-
metric spaces. On the other hand, Morton Brown [3] noted that a
T -space is developable if and only if it is semimetrizable by a semi-
metric under which all convergent sequences are Cauchy. Analogously
we are able to characterize symmetrizable spaces with a symmetric
under which all convergent sequences are Cauchy.
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THEOREM 2.3. A Housdorff space X is g-developable if and only
if X s symmetrizable by a symmetric under which all convergent
sequences are Cauchy.

Proof. Let g be a g-developable CWC-map for X, and v = (7,
Vs Vs, +--) the semirefined sequence mentioned above, that is, 7, =
{9(n, x): € X}. Now define a symmetric d by d(x, ¥) = 1/inf {j € N:
y ¢ st(x, ¥;)}. Let {x,} be a sequence converging to z. Since X is
Hausdorff and g a g-first countable CWC-map, {x,} is eventually in
g(k, ) for each ke N. For any ¢ >0, choose k, he€ N such that
1/k < e and z,eg(k, 2) for all » = h. Then g(k, ) D{x), Tppy )}
This implies that d(zx,, x,) < ¢ for any m, n = h.

Conversely, let d be a symmetric for X under which all con-
vergent sequences are Cauchy. It is easily verified that d satisfies
the Aleksandrov-Nemytskii condition

(AN) For any zc X and any ¢ > 0, there exists a 0 = d(z, ¢)
such that d(z, y) < d and d(z, 2) < d imply d(y, z) < e.

For each x and =, choose 6 = d(x, n) such that d(x, y) < o and
d(x, ) < ¢ imply d(y, z) < 1/n, let g(n, x) = S(x; d(x, n)). Now it is
not difficult to show that g is a desired g-developable CWC-map.

COROLLARY 2.4. A Hausdorff g-developable space is a quotient
T-image of o metric space.

ExampLE 2.5. (1) In symmetric spaces, g-developability and the
weak condition of Cauchy are not equivalent. In fact, there exist
strongly* o-metrizable spaces which are not g-developable. Non-
developable semimetric spaces are such examples.

(2) Non-metrizable Moore spaces are g-developable but not
g-metrizable.

Question 2.6. The auther could not determine the following
(1) Is a g-metrizable space g-developable?
(2) Is a g-developable space semistratifiable?
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