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We show that every continuous function on the ring of
integers of a ^-series field has a rearrangement that has
absolutely convergent Fourier series.

I* Introduction* Let p be a rational prime fixed throughout.
K will denote the p-series field of formal Laurent series in one variable
with finite principal part and with coefficients in GF(p), Thus, an
element xeK has representation as

x = Σ <*>$ (βy = 0, 1, , v - 1)

and a3- = 0 for j sufficiently small. Addition and multiplication are
defined by the usual formal sums and products of Laurent series.

The field K is topologized by taking as a basis the sets

Vmιh = {Σ δ/t* h = aί9 j < k)

where x = Σ UjP3'- With this topology, K is locally compact, totally
disconnected and nondiscrete.

The ring of integers © = {x: x = Σ°°=o (Ljp*} is the unique maximal
compact subring of K. Let dx denote Haar measure on K derived
from the additive structure and normalized so that D has measure 1.

As a locally compact abelian group, D has a Pontryagin dual D
that may be identified with K/Ό. We choose the representatives of
the form

and use the lexicographic ordering to match the characters χt to
the nonnegative integers. Of course, if χ is a continuous unitary
character of K+, then χ(x) is a pth root of unity for all xeK.

If / is an integrable function on O, its Fourier coefficients are
given by

/(«)= ( f(x)Ux)dx (ί = 0,1, •-.) .

We define the class A(D) of continuous complex-valued functions on
D as those functions / for which the quantity
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is finite. Under the pointwise operations A(£>) is an algebra; it is,
in fact, a Banach algebra with the above taken as the norm of /.

Suppose that h is a homeomorphism of ©, and that / and g are
two functions on D related by

9 = f°h .

Then g is said to be a rearrangement of /. N. Lusin asked whether
every continuous function on the circle group has a rearrangement
that has absolutely convergent Fourier series (see [4] p. 8). This
question is still open; however, see [3] for the best known result.
Here we prove the following.

THEOREM. Every continuous function f on Ό has a rearrange-
ment g that has absolutely convergent Fourier series.

It should be noted that the setting of the theorem contains as
a special case (p = 2) the classical dyadic group 2ω.

XL Preliminaries* The principal ideal in O generated by p, 5β,
is the unique maximal ideal in D. There is a non-archimedian valua-
tion I I on K given by setting

satisfies \x + y\ <: Max{|a?|, \y\}(x, yeK)} and therefore defines a
metric on K. The topology induced by this metric coincides with
that defined earlier.

The fractional ideals pv are given by

Now for each v, O decomposes into pv pair wise disjoint spheres 0){v, j),
each of measure p~%

o)(vf j) = xs + ψ (j = 1, 2, , p") .

We assume that the xs are ordered lexicographically. Thus, consecu-
tive blocks of length pv~λ have the same coefficient of the ψ term,
consecutive blocks of length pv~2 have the same coefficient of the *ψ
and ψ terms, etc.

Consequently, we have the containments

ω(v + 1, j) c ω(v, k) , ((& - l)p + 1 S 3 ^ kp)

In our construction of a homeomorphism of D it will be necessary
to make repeated use of the fact that two compact, totally discon-
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nected, metrizable, and perfect spaces are homeomorphic (see [1] p. 97).
From now on, since the prime number p will frequently occur

exponentiated and subscripted, for typographical reasons we shall
write p(v) for p\

III* LEMMA. Suppose that g is a continuous complex-valued
function defined on Ό. Then g is an A-function if the series whose
nth. term (n = 0, 1, 2, ) is given by

( 1 ) p(n)(p - 1) Σ min I | g(x) - 6,\dx
t = l b^ Jω(n,ΐ)

is convergent. If M denotes the sum of this series, then \\g\\A^

M+ HflrlU.

Proof. Suppose that g is locally constant on D and takes the
value a,j on ω(v, j), (j = 1, , p{v)). Then

( 2 ) g(t) = 1 gχtdx = Σ αA 1 χtdx .
J D Ai = l Jω(v,fc)

Now, if t ^ p(v), it follows from the orthogonality relatians (see [2]
p. 613) that g(t) = 0. Suppose that 0 ^ t ^ p{v), and therefore that
χ4 is a character identified with a representative of iΓ/O of the form

— V

There are p(^)(p — 1) characters corresponding to the representatives
(3) with rj = 0 f j < - n - ' 2, r_n_, Φ 0, - 1 < n < v.

Consider the sum

( 4 ) P ( Σ Ί ^ ( * ) I
t = 0

In order to estimate (4), let χt be a character corresponding to (3)
with r_, = r_u+ι = r_%_2 = 0, r_w_2 Φ 0, and — 1 < n. From (2) we
see that

p(v)g(t) = {A\z1+qί + + i4iz*+*i}

( 5 ) + . - .
i / /lP(Λ)ίyH-g _j_ . . . i /lP(%)/-;?'+g'l

where the A's are the sums of consecutive blocks of the a's of length
p(v — (n + 1)).

Ax = (Z-i + + &p(i,-(%+l))
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Furthermore, z Φ 1 is a pth root of unity, and qlf , qvin) are positive
integers which depend on χt.

Since the sum of p successive powers of of a pth root of unity Φ 1
is zero, we see that for arbitrary complex numbers δ l f •••, bpin)

(6)
p(v - fa + l))bp{n)(z + + z9) .

Combining (5) and (6) and applying the triangle inequality, we see that

( 7 ) I g(t) I ̂  { " I p α, - 6,1 + + ^ Σ % ) J α* - ^ ) |}1/3>M .

However, the right hand side of (7) is just
Pin) C

Since there are p(n)(p — 1) characters χt of the type under considera-
tion, the lemma is proved in the case that g is locally constant.

Now assume that g is an arbitrary continuous function on O
which satisfies the hypothesis of the lemma. Let N be a fixed positive
integer, and approximate g uniformly on O by a sequence gm of
locally constant continuous functions. Now, for every choice of
integer n and complex numbers 6̂ (1 5Ξj j ^ p(n)) we have

(8) Σ ( \gJ.x)-b,\dx »Σ
j=l Jω{n,j) j =

as m—> oo. Since the left hand side of (8) bounds \gm{t)\, where χt

is a character corresponding to (3) with r5 = 0, j < —(n + 1), r_n^ Φ
0, it follows that for arbitrary ε > 0 that

when m is sufficiently large. Furthermore, since for each ί, ^w(ί) —>
g(t) as m —> oo, we conclude that

Σ>\S(t)\£M+ Hflrlloo + e .
t = Q

Since N and ε are arbitrary, the lemma is proved.

IV Proof of the theorem* Suppose without loss of generality
that | | / | I * = 1; we show how to construct a homeomorphism h of O
such that g = f oh satisfies the hypothesis of the lemma. Thus we
will have rearrangement of / whose Fourier series converges abso-
lutely.



THE RING OF INTEGERS OF A p-SERIES FIELD 257

We shall construct h as a limit of homeomorphisms Hn

h = limHn
n

where Hn is a composition of n homeomorphisms of O, h1 o h2 ° o hn.
We begin by describing the construction of the λ's.

For ί ί c O , it will be convenient to use the following notation

0,(10 = sup | / ( s ) - / ( » ) | .

The quantity Of(U) is referred to as the oscillation of / on ί7.
Choose a partition of O consisting of mutually disjoint, nonvoid,

open and closed sets Uj(l ^ j ^ p + 1) such that the oscillation of /
on the union of the U3 (l ^ j ^ p) is less than or equal l/p(3). Thus,

O (U
Then take hλ to be a homeomorphism of D satisfying the following
requirements

Λ) =CΓ, (1 ^ i ^ p ~ 1)

- U,

Now suppose that 7̂ ^ •• ,Aft_1 are homeomorphisms of D that
have been defined. Set Hn^ = ht © fe2 o . . . o /2,%_1#

We now turn to the definition of hn. For i = 1, •••, p(n — 1)
let Uij(l S j ^P + 1) denote a partition of ω(n — 1, i) into open
and closed sets such that the following are satisfied.

U( 9) 0,.*^ ( U IT*,,) £ l/p(2n + 1) (i = 1, 2, •• , p(n - 1))

(10) ω(S(n - 1), ip(2(n - Ί) + l) c Uip,p+1 (i = 1, 2, . , p(^ - 2)) .

Then take λn to be a homeomorphism of £> satisfying the following
requirements (i = 1, 2, , p(% — 1))

(11) hn(ω(n, k)) = Uiti (k = (i - l)p + j, 1 ^ j £ p -

(12) Mώ(tt, ip)\ω(3w, ίp(2^ + 1))) = UitP

(13) Mω(3w, ip(2tt + 1)) - J7<>p+1 .

Finally, we set Hn = jff̂ ! o fcn.
First, we observe that

(14) hnω(n - 1, i) = ω(n - 1, i) (i = 1, 2, , p(w - 1)) .
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From (14) we see that for every neighborhood V of 0, hn{x) and
h~ι(x) belong to V + x for n sufficiently large. From this follows
the existence of the limits

limiϊ% = h , l i m ί ί ; 1 - h~ι .

Again, from (14) the continuity of h is clear. Therefore h is a well-
defined homeomorphism of D.

Set g = / o h . The function g is then our rearrangement of /,
and it remains to check that series described in the lemma is con-
vergent.

Now, the inequalities

Of.HMn> 0)) £ Vp(2n + 1) (j = (i - l)p + fc, 1 ^ k £ p - 1 ,

i = 1, •••, p(n - 1))

follow immediately from (9) and (11). Sucessive application of (14)
therefore yields

(15) Og(ω(n, j)) ^ l/p(2n + 1) (j = (i - l)p + kf 1 ^ k ^ >̂ ~

i = 1, •••, p(π - 1))

The inequalities

(16) OfoHn(ω(n, ip)\ω(3n, ίp(2n + 1)) ^

follow from (9) and (12). Relation (10) (with n — 1 replaced by w)
and the fact that ω(Sn, ip(2n + 1))=> ω(3(^ + 1), i'p(2(n + 1) + 1)),
where i' = ip, imply that (16) holds with Hn replaced by Hn+ι. This
last step may be successively repeated to obtain

(17) OfoHm(ω(n, ip)\ω{Zn, ip(2n + 1)) ^ l/p(2n + 1) (n<>m) .

However, since f°Hm tends uniformly to g we see that

(18) Og(ω(n, ip)\ω(Zn, ip(2n + 1)) ^ l/p(2n + 1) .

From (15) and the fact that the measure of ω(n, j) is p{ — n) we
obtain the inequalities

min ( \g(x) - bj\dx £ l/{p{2n + ί)p(n)}
(19) hJ } ω { n > j )

(j = (i - l)p + k, 1 ^ k ^ p - 1, i = 1, , 2?(w - 1)) .

From (18) we deduce that

min ί \g{x) - bd \ dx ^ l/{p(2π + ΐ)p(n)} + 2/p(Sn)
(20) δ i J ω ( % ) i )

(i i i 1 ( - 1)) .
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We consider now the nth term of the series described in the
lemma. Combining (19) and (20) we obtain the inequality

p(n)(p - 1) Σ min \ \g(x) - bά\dx ^ p(n)(p - ΐ){l/p(2n
Q = 1 bj Jω(n,3)

+ 2p(n

Therefore, the series of the lemma is convergent. The proof of the
theorem is now complete.
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