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Let Sbe a topological Hausdorff semigroup and s e S b e a
strongly root compact element. Then there are an algebraic
morphism /: Q+ U {0} -* S with /(0) = e9 /(I) = s, and a one-
parameter semigroup φ:H->S which satisfy the following
properties: If K = Π {/( ]0, ε[Q): 0 < ε < 1}, then K is a com-
pact connected abelian subgroup of ^ ( e ) , ^(0) = e, φ(H) is in
the centralizer Z ~{xe eSe :xk = kx for all k e K) of K in
eSe, and φ(t)ef(t)K for each £eQ+. Furthermore, if ^ is
any neighborhood of s in S, then φ may be chosen so that
0(1) 6 ̂ : and, in fact, if K is arcwise connected, then φ may
be chosen so that φ(l) = s. The above statements also hold
for strongly pth root compact elements almost everywhere.

1* Introduction* We are concerned with the question of when
a divisible element in a topological semigroup can be embedded in a
one-parameter semigroup which has many applications in Probability
theory (cf. [4], [8]).

The first result about the existence of one-parameter semigroups
in a compact semigroup which we call the One-Parameter Semigroup
Theorem is due to Mostert and Shields [7], 1957. In I960, an in-
dependent proof based on the local nature of the compact semigroup
was given by Hoffmann (cf. [5], [6]). In 1970, a global proof was
presented by Carruth and Lawson [1], The first result of a
generalized one-parameter semigroup theorem dealing with the
embedding problems which we will call the Embedding and Density
Theorem is indicated by Hofmann in [4] and later proved by Siebert
[8]. Siebert's proof is based on the notion of a local semigroup
called ducleus (cf. [6]). We will present in this paper a global
proof of this theorem by applying the One-Parameter Semigroup
Theorem.

Throughout this paper, we maintain that R+J Q+ and Z+ are
the totalities of strictly positive real numbers, rational numbers
and integers, respectively, H = i2+ U {0} and Ql = {n]pm: n e Z+,
meZ+{J {o}} for a prime p. For convenience, we will use ]α, b]Q

(resp. ]α, 6[ρ, etc.) and ]af b]QP (resp. ]<x, h[QP) to denote ]a, b] Π Q+
(resp. ]a, b[ n Q+, etc.) and ]a, b] Π Ql (resp. ]α, b[ n Q+) respectively.
We also maintain that S is a topological (Hausdorff) semigroup and
3ίf{e) is the maximal group of units in the closed subsemigroup eSe
for an idempotent e e S.
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2* On the existence of a one-parameter semigroup in f(A)
where /: A —> £ is an algebraic morphism with A — Q+, Qζ+
Throughout this section, we will always assume that /: Q+ (resp.
Ql) —* S is an algebraic morphism so that /(]0, d]Q) (resp. /(]0, d]QP))
is compact for some d > 0 unless mentioned otherwise. As the
discussions for Q+ and for Qp

+ would be almost the same, we will
concentrate on Q+ only.

DEFINITION. For each seS and each n ^ 1, let Wn(s) = {teS:
tn = s}, W(n; s) = {£m: 1 ^ m ^ w, ί* = s}. s is said to be divisible
(resp. p-divisible) if Wn(s) Φ 0 (resp. TFpn(s) Φ 0 ) for all w ^ 1; root
compact (resp. pth root compact) if Wn{s) (resp. Wp»(s)) is in addition
compact for each n^l; strongly root compact (resp. strongly ptln root
compact) if Wφ) = U {W(n; s): n^l} (resp. W^s) = U {W(pn; s):
n ^ 1}) is in addition relatively compact.

PROPOSITION 2.1. Let s be a root compact (resp. pth root compact)
element in S. Then there is an algebraic morphism f: Q+ (resp.
Ql)~+S so that /(I) = s. If s is strongly root compact (resp. strongly
pth root compact), then f may be chosen so that /(]0,1]Q) (resp. /(]0, 1]QP))

is compact.

Proof. For each n ^ 1 and i >̂ 0, pick an sn+ί e Win+i)[(s) (resp.
sπ+, 6 TΓp(«+i)(s)) and let

r = ^ ^

(resp. αΛ = (sf, s**"1, , sn, 8n+1, •••))•

Then {an} is a sequence in the compact set Π»*i Wnϊ(s) (resp.
Π^^i Wpn(s)). Hence there is a convergent subnet {an{k)} converging

to a = (ίx, ί2, •) e Π ^ i T »̂i(β
Then

(resp. ίf+1 = (lim β::,',*'"4)*

= lim 8&?-1+1 = tg)

for all q ^ 1, and ίt = s. If n/m\ = δ/α! (resp. »/pm = 6/i>s), then

ί i = (« ! / α ! ) 6 = «

(resp. t l = («""*)* = O .

Hence /: Q+ (resp. Qϊ)—-S given by /(w/m!) = ίi(resp./(w/ί>m) = t;)
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is well-defined. If n/ml, b/a[ e Q+ (resp. njpm, b/pa e Ql), assuming
a ^ m, then

f(nfmϊ + b/al) =,

j.n{a\/m\)j.b -in j.
— "a <sa — <sm0

reβp./(n/p« + 6/p ) =

= tγa~mt\

whence / is an algebraic morphism so that /(I) = s. The rest is
simple.

LEMMA 2.2. for each x > 0, let S(x) = /(]0, x[Q). Then
(1) S(x + y) = S(x)S(y) for all x, y > 0. In particular, S(x)

is compact for each x > 0
(2) /(Q+) /̂ αs ί̂ e identity e so that K = fΊ {S(α ): a; e Q+} is a

divisible compact abelian subgroup of 3ίf{e). In particular, we may
extend f to Q+\J {0} so that /(0) = e

(3) Kf{[x, y[Q) - f([x, y[Q) for all x < y e Q+.

Proof Straightforward (cf. § 3, Chapter B, [6]).

LEMMA 2.3. The following statements are equivalent:
(1) K={f(0)}
( 2 ) f is continuous at 0
( 3 ) f is continuous.

Proof, (cf. 3.9, p. 102, [6].)

LEMMA 2.4. If f is continuous, then there is a unique one-
parameter semigroup φ so that φ \ {Q+ U {0}) = /.

Proof. Given a d > 0, there is a net {xa} in ]0, d + 1[Q with
lim xa = d. Since {(/(#«)} is a net in S(d + 1), there is a convergent
subnet {fXβ)}. Define F(d) = limf(xβ). It is straightforward to
check that F:H—+S is a well defined morphism so that U {F(]0, x[):
x > 0} = {/(0)}, whence ί7 is continuous (cf. 3.9, p. 102, [6]).

LEMMA 2.5. Let φ:H—>S be a nontrivial one-parameter semi-
group. Then there is a d e ]0, 1] so that φ | [0, d] is injective.
Moreover, if c > 0, one may reparameterize φ so that φ | [0, c] is
injective (cf. 3.9, p. 102, [6]).
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Since K acts on f(Q+) and f([x, y[Q), one has the orbit spaces
f(Q+)/K and f([v, y[Q)/K. We will use the same letter π to denote
the orbit maps.

LEMMA 2.6. f(Q+)/K is atopologίcai monoid under the multipli-
cation xK* yK = xyK.

LEMMA 2.7. If f(Q+) qL K, then πof; Q+ (j {0} -+f(Q+)/K is non-
trivial continuous morphism so that π(f([x9 V[Q)) = f([x, V[Q)/K for
all x < y G Q+ U {0}.

Proof. The continuity of πof follows from 2.3. The rest follows
from the closedness of π.

In the remainder of this section, we maintain that /(I) ί K and
so πof extends to a unique one-parameter semigroup g: H—*f(Q+)fK
that g I [0, 2] is injective by a suitable reparameterization of g or /,
i.e. the following diagram commutes:

[0,2] —

Let p = g~'oπ: S(2) —• [0, 2]. Then p is a continuous map such that

P(f(r)) - (g-1oττ)(/(r)) - r for all r e [0, 2]Q

and that the following condition is satisfies:

pixy) = ^O) + /θ(i/) for all x, y e S(ΐ) .

LEMMA 2.8. The following statements hold:
(1) x G iΓ/(r) ί # x G π-^flrίr)) /or βαc/i r G Q+ U {0}
(2 ) x G S(2) ijf ί/̂ βrβ is α unique t e [0, 2] so ί/iαί a? G π~ι{g{t))
(3) π~%g{[x, y])) = g/([α;, τ/[Q) = /(]», τ/[Q) /or αίZ x, y e Q+ U {0}
(4)
(5) S(l)\if/(1) = S(2)\Kf([l, 2[g).

Proof. Straightforward.

Define a multiplication on the space X obtained from S(l) by
collapsing Kf(l) to a point as follows:

Jajy if x,y,xyeS(l)\Kf(l)
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Let TΓ': S(2) -> X be defined via

π' I S(l)\Kf(l) = TΓ I S(2)\Kf([l, 2[Q) and

l, 2[Q)) =

then

I 1"
Xx X >X

mR

commutes, hence mB is a global multiplication on X.

LEMMA 2.9. X is a compact abelian monoid in the quotient
topology.

Proof. Since π' is a closed map, mR is continuous.

Let [0, 1]* denote the space [0, 1] equipped with the multiplica-
tion x + y = min {1, x + y). Then [0, 1]* is a compact monoid in the
usual topology. In particular, we have the following factorization:

X ,[0, l]*
PR

where τ: H—> [0, 1]* is the canonical map and pB: X—*[0, 1]* is the
unique continuous morphism making the diagram commute.

LEMMA 2.10. The following statements hold:
(1) X has exactly two idempotents e and 0 = Kf(l)
(2) K is the maximal group of units in X
( 3) K is not open in X
(4) X\{0} is isomorphic to S(l)\Kf(l).

Proof. (1) and (4) are clear. (2): We have X\K = pΰι(]O, 1])
which is an ideal. Thus K is maximal. (3): If K were open, then
X\K would be closed, hence compact, and thus pR{X\K) — ]0, 1]
would be compact which is not the case.

PROPOSITION 2.11. There is a continuous morphism φ*: [0,1]* —>X
so that φ*(0) = e and ^({O}) = {1}.



290 JOHN YUAN

Proof. By 2.10 we can apply the One-Parameter Semigroup
Theorem (Thm. 1, p. 510, [7]; [1]) to obtain φ*.

PROPOSITION 2.12. pR°Φ* is the identity map on [0, 1]*.

Proof. We observe first that ρR°φ* is an endomorphism a of
[0, 1]* with a-\{l}) = {1} and is therefore the identity.

PROPOSITION 2.13. There is a one-parameter semigroup φ: H—> S
such that φ(r)eKf(r) for all reQ+.

Proof. For all r e [0, 1[Q, r = ρR°Φ*{r) = ρ°Φ*(r) and so φ*{r) e
ρ~\r) = Kf(r). Let φ be the unique lifting of φ* to H. Then φ(r) e
Kf(r) for all reQ+.

3* On the Embedding and Density Theorem*

PROPOSITION 3.1. Let G be a locally compact abelian group and
LG — Horn (B, G) the totality of one-parameter subgroups in G. If
exp: LG —> G denotes the map exp (/) = /(I), then

(1) exp (GL) = Go, where Go is the identity component of G
( 2 ) exp (LG) = Go iff Go is arcwise connected.

Proof. (1) (25.20, p. 410, [3]). (2) (Thm. 1, p. 40, [2]).

EMBEDDING AND DENSITY THEOREM 3.2. Let s be strongly root
compact in S. Then there are an algebraic morphism f: Q+ U {0} —• S
with /(0) = e, /(I) = s, and a one-parameter semigroup φ: H — S
which satisfy the following properties: If K = n {/(]0, ε[Q): 0 < ε < 1},
then K is a compact connected abelian subgroup of 3(f(e), φ(0) = e,
0(fiΓ) is in the centralizer Z = {x e βSβ: ίcfc = fc# for all fc e K] of K
in eSe, and φ(t) e Kf(t) for each teQ+.

Furthermore, if <%s is any neighborhood of s in S, then φ may
be chosen so that φ(l) e ̂  and, in fact, if K is arcwise connected,
then φ may be chosen so that φ(ϊ) = s.

Proof. By 2.1, there is an algebraic morphism /: Q+ U {0} —> S
such that /(0) = e, /(I) = s, /(]0, 1]Q) is compact, Ka3ίf(e) is a
compact connected abelian subgroup and f(Q+) c

If seK, then by 3.1 the assertion is true. If s$K, then by
2.13 there is a one-parameter semigroup φ:H—+S so that φ(H)a
f(Q+) c βSβ and φ(r)eKf(r) for all reQ+U{0}. In particular,
is in the centralizer of iΓ in eSe. Let ^ be a neighborhood of s in
S; then there is a neighborhood C7 of e in iΓ so that sUcz^. Pick
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a k 6 K so that 0(1) = sk, by the fact that exp (LK) = K, there is
an ψeLK so that ψ(ί)e Uk~\ Let φt: H~*S be defined via ^(r) =
φ(r)ψ(r). As 0(£Γ) is in the centralizer of K in β£te, then φί is a
well-defined one-parameter semigroup so that

&(1) = ^(l)f(l) € S& Z/ίΓ1 = 8U.

It is easy to check that φλ also satisfies the same properties as
stated above. If K is arcwise connected, by 3.1 ψ may be chosen
so that ψ(l) = AT1 and so ^(1) = s.

COROLLARY 3.3. If K is a Lie group, then there is a one-
parameter semigroup φ so that φ(ί) = s (cf. Thm. 7, p. 141, [9]).

THEOREM 3.4. Let s be a strongly pth root compact element in
S. Then there are an algebraic morphism f: Ql U {0} —> S with /(0) = e,
/(I) = sf and a one-parameter semigroup φ: H-~> S which satisfy the
following properties: If Kp = Π {/(]0, e[QP): 0< ε < 1}, then Kp is a
p-divisϊble compact abelian subgroup of έ%f(e), φ(0) = e, φ(H) is in
the centralizer Z of Kp in eSe, and φ(r) e Kpf(r) for all r e Ql.

REMARK. KP is in general not divisible (cf. p. 265, [5]; p. 117,
[6]).

PROPOSITION 3.5. Let s be a strongly root compact (resp. strongly
pth. root compact) element in S and f and φ be as stated in 3.2
(resp. 3.4). Then there is an algebraic morphic morphism h:Q+—>K
(resp. h: Qp+ -> Kp) so that φ(r) = f(r)h(r) for all reQ+ (resp. Qp

+).

Proof. For each n^l, let Anl = {x e K: f{ljn\)x =
B(p; n) = {x e Kp: f(l/pn)x = Φ(l/pn)}). Clearly, Anl (resp. B(p; n) is a
nonempty compact subset for each n ^ 1. The construction of h
then follows as in 2.1.

The following example shows that there are elements which are
not strongly root compact but which are neverthless embeddable in
one-parameter semigroups:

EXAMPLE 3.5. Let S = SL(2; R) and s = ("^ ?\ then s is
rΛ\yz— —1\ is not compact, whence s is

Z U/ )

not even 2th root compact. But the map f: R—>S defined via

/ cos πt sin πt

V — sin πtcosπt
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is a one-parameter subgroup so that /(I) = s.
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