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Let S be a topological Hausdorff semigroup and s€S be a
strongly root compact element. Then there are an algebraic
morphism f: Q. U {0} = S with f(0)=e, f(1)=s, and a one-
parameter semigroup ¢: H— S which satisfy the following
properties: If K= N{f( 10,¢[;):0 <e <1}, then K is a com-
pact connected abelian subgroup of 5£%e), ¢(0) = e, ¢(H) is in
the centralizer Z = {xceSe:xk = kx for all kc K} of K in
eSe, and ¢(t) € f(t)K for each tc@Q.. Furthermore, if % is
any neighborhood of s in S, then ¢ may be chosen so that
¢(1)eZ: and, in fact, if K is arcwise connected, then ¢ may
bhe chosen so that ¢(1) =s. The above statements also hold
for strongly pth root compact elements almost everywhere.

1. Introduction. We are concerned with the question of when
a divisible element in a topological semigroup can be embedded in a
one-parameter semigroup which has many applications in Probability
theory (cf. [4], [8]).

The first result about the existence of one-parameter semigroups
in a compact semigroup which we call the One-Parameter Semigroup
Theorem is due to Mostert and Shields [7], 1957. In 1960, an in-
dependent proof based on the local nature of the compact semigroup
was given by Hoffmann (cf. [5], [6]). In 1970, a global proof was
presented by Carruth and Lawson [1]. The first result of a
generalized one-parameter semigroup theorem dealing with the
embedding problems which we will call the Embedding and Density
Theorem is indicated by Hofmann in [4] and later proved by Siebert
[8]. Siebert’s proof is based on the notion of a local semigroup
called ducleus (cf. [6]). We will present in this paper a global
proof of this theorem by applying the One-Parameter Semigroup
Theorem.

Throughout this paper, we maintain that B,, Q. and Z. are
the totalities of strictly positive real numbers, rational numbers
and integers, respectively, H =R, U{0} and Q2 = {n/p™neZ,
meZ, U{0}} for a prime p. For convenience, we will use la, bl
(resp. Ja, blo, ete.) and Ja, blgs (resp. la, bler) to denote e, b N Q.
(resp. Ja, b[ N Q,, etc.) and ]a, b] N Q2 (resp. la, b[ N @2) respectively.
We also maintain that S is a topological (Hausdorff) semigroup and
57 (e) is the maximal group of units in the closed subsemigroup eSe
for an idempotent ec S.
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2. On the existence of a one-parameter semigroup in m
where f: A— S is an algebraic morphism with 4 = Q,, Q..
Throughout this section, we will always assume that f: Q. (resp.
Q?)— S is an algebraic morphism so that f(]0, d]o) (resp. f(]0, dl¢»))
is compact for some d > 0 unless mentioned otherwise. As the
discussions for @, and for Q2 would be almost the same, we will
concentrate on Q. only.

DEFINITION. For each s€S and each n =1, let W,(s)={teS:
t"=s}, Wn;s)={tm1=<m < n,t"=s}. s is said to be divisible
(resp. p-divisible) if W,(s) = O (resp. W, a(s) #= @) for all » = 1; root
compact (resp. pth root compact) if W,(s) (resp. W,.(s)) is in addition
compact for each n = 1; strongly root compact (resp. strongly pth root
compact) if W.(s) = U {W(n;s):n =1} (resp. W,o=(s) = U {W(p"; s):
n = 1}) is in addition relatively compact.

ProrosITION 2.1. Let s be a root compact (resp. pth root compact)
element in S. Then there is an algebraic morphism f: Q. (resp.
2)— S so that f(1) = s. If s is strongly root compact (resp. strongly
pth root compact), then f may be chosen so that f(]0, 1],) (resp. £(J0, 1]er))
18 compact.

Proof. For each n =1 and 7 = 0, pick an s,.;€ W1 (s) (resp.
8p, € Wots(s)) and let

G, = (SZ!; S;LL”Z!, R Say Snpt1y *° ')
(I‘esp. @, = (S}Zn’ Sp”_l’ crty Say Sagry t° ')) .
Then {a,) is a sequence in the compact set [[,., W,(s) (resp.
.2 Woai(s)). Hence there is a convergent subnet {a,,} converging
to @ = (t, ty =+ +) € ITazs Wou(s) (resp. I1nzy Wpel(s)).

Then
tyit = (lim s oy
= lim s;{5)" " = ¢,
. n(k)—q
(resp. t2., = (lim 82, 9)?
. nik)—g+1 __
= lim s2f, =1,)

for all ¢ = 1, and ¢, = s. If n/m! = b/a! (resp. n/p™ = b/p®), then
t; — (tz!/a!)b — tg,
(resp. &y, = (12" = ta) .

Hence f: Q. (resp. Q2)— S given by fln/m!) = ty, (resp. f(n/p™) = t3)
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is well-defined. If #n/m!, bja! € Q. (resp. n/p™, b/p® € QF), assuming
a = m, then

fn/m! + bal) = f(ﬁ(a!_%M)

—_ (al/mly2b b
= 3™t = thl,

vesp. fn/p” + bfp") = f(*E—12)
= 27" = tatl)

whence f is an algebraic morphism so that f(1) =s. The rest is
simple.

LEMmA 2.2.  for each x > 0, let S(x) = f(10, x[o). Then

(1) S(x+ y) = Sx)S(y) for all z, vy >0. In particular, S(x)
is compact for each x > 0

(2) AQ,) has the identity e so that K= N{S(x):zcQ,} is a
divisible compact abelian subgroup of 57°(e). In particular, we may
extend f to Q. U {0} so that f(0) = e

(3) Kf(lz, ylo) = fll=, ylo) for all x <yeQ,.

Proof. Straightforward (ef. §3, Chapter B, [6]).

LemMMA 2.3. The following statements are equivalent:
(1) K={f(0)}

(2) f is continuous at 0

(3) f is continuous.

Proof. (cf. 3.9, p. 102, [6].)

LEMMA 2.4. If f is continuous, then there is a unique one-
parameter semigroup ¢ so that ¢|(Q. U{0}) = f.

Proof. Given a d > 0, there is a net {x,} in ]0, d + 1], with
lim 2, = d. Since {(f(x.)} is a net in S(d + 1), there is a convergent
subnet {fx;)}. Define F(d) = lim f(x;). It is straightforward to
check that F: H-— S is a well defined morphism so that U {#(]0, z[):
2 > 0} = {f(0)}, whence F' is continuous (cf. 3.9, p. 102, [6]).

LEMMA 2.5. Let ¢: H— S be a nontrivial one-parameter semi-
group. Then there is a de€]0,1] so that ¢]|[0,d] is injective.
Moreover, if ¢ >0, one may reparameterize ¢ so that 6|0, c] s
wnjective (cf. 3.9, p. 102, [6]).
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Since K acts on f(Q.) and f([x, ¥[o), one has the orbit spaces
J(Q)/K and f([v, ylo)/K. We will use the same letter = to denote
the orbit maps.

LEMMA 2.6. f(Q.)/K is a topological monoid under the multipli-
cation xK-yK = xyK.

Lemma 2.7. If f(Q,) Z K, then wof: Q, U {0} — f(Q.)/K is non-
trivial continuous morphism so that w(f([z, ylo) = f(x, ylo)/K for
all 2 <ye@,; U{0}.

Proof. The continuity of 7o f follows from 2.3. The rest follows
from the closedness of =.

In the remainder of this section, we maintain that f(1)¢ K and
so mwof extends to a unique one-parameter semigroup g: H— f(Q.)/K
that g1[0, 2] is injective by a suitable reparameterization of g or f,
i.e. the following diagram commutes:

10, 2[, > S(2)

| "
v

[0, 2] — S@)/K .

Let p = g7'om: S(2) — [0, 2]. Then p is a continuous map such that
o(J(r)) = (g7om)(f(r)) = » for all rel0, 2],
and that the following condition is satisfies:
o(xy) = (@) + o(y) for all =z, yeS(Q).

LEMMA 2.8. The following statements hold:

(1) 2zeKf(r) off xex(g(r)) for each r< Q. U {0}

(2) %82 iff there is a unique t [0, 2] so that x 7 (g(t))
(3) = Ho(x, yD) = Kf([x, ylo) = fx, ylo) for all x, y€Q. U{0}
(4) SMEKSQ) < K11, 2o)

(5) S\KAL) = S@\KATL 2o

Proof. Straightforward.

Define a multiplication on the space X obtained from S(1) by
collapsing Kf(1) to a point as follows:

wy it x,y, vy e SAO\Kf(Q)

mx(@, ¥) = Kf(1) otherwise.
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Let #n': S(2) — X be defined via

©' | SO\KSf(1) = = | S@\KS([1, 2[¢) and

' (Kf([1, 2[e)) = {KfQL)};
then

S@) x S(1) -2 8(2)

n’Xn’J’ ln'

XxX —X
mer
commutes, hence m; is a global multiplication on X.

LEMMA 2.9. X s a compact abelianm monoid im the quotient
topology.

Proof. Since 7’ is a closed map, m; is continuous.

Let [0, 1], denote the space [0, 1] equipped with the multiplica-
tion ¢ + ¥y = min {1, x + y}. Then [0, 1], is a compact monoid in the
usual topology. In particular, we have the following factorization:

S2) - [0, 2]

where 7: H— [0, 1], is the canonical map and pp: X—|[0, 1], is the
unique continuous morphism making the diagram commute.

LEMMA 2.10. The following statements hold:

(1) X has exactly two tdempotents e and 0 = Kf(1)
(2) K is the maximal group of units in X

(8) K 1is not open in X

(4) X\{0} is isomorphic to S(L)\Kf(1).

Proof. (1) and (4) are clear. (2): We have X\K = pz(]0, 1])
which is an ideal. Thus K is maximal. (3): If K were open, then
X\K would be closed, hence compact, and thus px(X\K) = ]0, 1]
would be compact which is not the case.

PRrROPOSITION 2.11. There is a continuous morphism ¢,: [0, 1], — X
so that ¢.(0) = e and ¢3'({0}) = {1}.
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Proof. By 2.10 we can apply the One-Parameter Semigroup
Theorem (Thm. 1, p. 510, [7]; [1]) to obtain 4,.

PROPOSITION 2.12. (0z0¢, 18 the identity map on [0, 1]..

Proof. We observe first that pgo¢. is an endomorphism « of
[0, 1], with a™({1}) = {1} and is therefore the identity.

ProproSITION 2.13. There is a one-parameter semigroup ¢: H— S
such that #(r) e Kf(r) for all re@,.

Proof. For all re|0, 1]y, r = 0o9.(r) = pop.(r) and so 4.(r)e
o0 r) = Kf(r). Let ¢ be the unique lifting of ¢, to H. Then ¢(r) <€
Kf(r) for all reQ,.

3. On the Embedding and Density Theorem.

PropPoOSITION 3.1. Let G be a locally compact abelian group and
LG = Hom (R, G) the totality of ome-parameter subgroups in G. If
exp: LG — G denotes the map exp (f) = A1), then

(1) exp(GL) = G,, where G, is the identity component of G

(2) exp(LG) = G, iff G, 18 arcwise connected.

Proof. (1) (25.20, p. 410, [3]). (2) (Thm. 1, p. 40, [2‘]).

EMBEDDING AND DENSITY THEOREM 3.2. Let s be strongly root
compact in S. Then there are an algebraic morphism f: Q, U {0} — S
with f(0) =¢, f(1) =s, and a one-parameter semigroup ¢: H — S
which satisfy the following properties: If K = N{f(]0, elo): 0 < & < 1},
then K is a compact conmected abelian subgroup of S#(e), ¢(0) = e,
S(H) is in the centralizer Z = {x ceSe:xk = kx for all ke K} of K
in eSe, and $(t) € Kf(t) for each te@Q,.

Furthermore, tf 7 is any neighborhood of s in S, then ¢ may
be chosen so that ¢(1) € Z; and, in fact, if K is arcwise connected,
then ¢ may be chosen so that ¢(1) = s.

Proof. By 2.1, there is an algebraic morphism f:@Q, U {0} — S
such that f(0) =e, f(QQ)=s, f(]0, 1lg) is compact, KC SF(e) is a
compact connected abelian subgroup and f(Q.) C eSe.

If seK, then by 3.1 the assertion is true. If s¢ K, then by
2.13 there is a one-parameter semigroup ¢: H— S so that ¢(H)C
FQ,) ceSe and ¢(r) e Kf(r) for all reQ, U{0}. In particular, ¢(H)
is in the centralizer of K in eSe. Let % Dbe a neighborhood of s in
S; then there is a neighborhood U of ¢ in K so that sUcC %. Pick
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a ke K so that ¢(1) = sk, by the fact that exp (LK) = K, there is
an ¥y e LK so that y(1) e Uk™. Let ¢,: H— S be defined via ¢,(r) =
d(r)(r). As ¢(H) is in the centralizer of K in ¢Se, then ¢, is a
well-defined one-parameter semigroup so that

$(1) = )y (1) eskUk™ = sU .

It is easy to check that ¢, also satisfies the same properties as
stated above. If K is arcwise connected, by 3.1 4 may be chosen
so that (1) = k™ and so ¢,(1) = s.

COROLLARY 3.3. If K s a Lie group, them there is a one-
parameter semigroup ¢ so that ¢(1) = s (cf. Thm. 7, p. 141, [9]).

THEOREM 3.4. Let s be a strongly pth root compact element in
S. Then there are an algebraic morphism f: Q% U {0} — S with f(0) = e,
fQ) = s, and o one-parameter semigroup ¢: H— S which satisfy the
Sfollowing properties: If K, = N{f(]0, eler): 0< € < 1}, then K, is a
p-divisible compact abelian subgroup of S#(e), ¢(0) = e, ¢(H) is in
the centralizer Z of K, in eSe, and ¢(r) € K,f(r) for all re Q2.

REMARK. K, is in general not divisible (cf. p. 265, [5]; p. 117,
[6]).

PROPOSITION 3.5. Let s be a strongly root compact (resp. strongly
pth root compact) element in S and f and ¢ be as stated in 3.2
(resp. 3.4). Then there is an algebraic morphic morphism h: Q, — K
(resp. h: Q2 — K,) so that ¢(r) = f(r)h(r) for all re @, (resp. Q2).

Proof. For each n =1, let A4, = {xe K: f(1/n!)x = ¢(1/n!)} (resp.
B(p; n) = {x e K,: f(1/p")x = ¢(1/p™)}). Clearly, A, (resp. B(p;n) is a
nonempty compact subset for each n = 1. The construction of &
then follows as in 2.1.

The following example shows that there are elements which are
not strongly root compact but which are neverthless embeddable in
one-parameter semigroups:

ExampLE 3.5. Let S = SL(2; R) and s = <_(1) _(1)>: then s is

divisible and Wy(s) D {(2 ?(J)> Yz = —1} is not compact, whence s is
not even 2th root compact. But the map f: R— S defined via

cos 7t sin nt)

ft) = (

—sin 7wt cos i
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is a one-parameter subgroup so that f(1) = s.
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