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Let (M, d) be a complete metric space and S(M) the set
of all nonempty bounded closed subsets of J{. A set-valued
mapping f: M — S(M) will be called (uniformly) locally con-
tractive if there exist ¢ and 2 (¢>0,0< 1< 1) such that
D(f(x), fy)) < Ad(xz, y) whenever d(z, ¥) < ¢ and where D(f(x),
f()) is the distance between f(x) and f(y) in the Hausdorff
metric induced by d on S(M). It is shown in the first theorem
that if M is “well-chained,” then f has a fixed point is, that
is, a point x € M such that z < f(zx). This fact, in turn, yields
a fixed-point theorem for locally nonexpansive set-valued map-
pings on a compact star-shaped subset of a Banach space.
Both theorems are extensions of earlier results.

1. Locally contractive set-valued mappings. Following Assad
and Kirk [1] we shall define D as follows: if >0 and Ye S(M),
let

Z(r,Y) ={xeM: dist (z, Y) < r}.
Then for A, Be S(M) we define
D(A, B) = inf {r: AC Z(r, B) and BC Z(r, A)} .
Also noted in [1] are two lemmas:

LemMmA 1. If A, BeS(M) and x< A, then for each positive
number « there exists y € B such that

d(z, y) = D(4, B) + «..

LEMMA 2. Let {X,} be a sequence of sets im S(M), and assume
that lim,., D(X,, X)) = 0 (X, e S(M)). Then if z,e¢X,(n=1,2,-.")
and lim,_. x, = x,, it follows that x,c X,.

Finally, suppose M is well-chained in the sense that for every
€ >0 and x, y€ M there exists an e-chain, that is, a finite set of
points

T =Yo Y ~**y Y =2

(n may depend on both x and 2) such that d(y, ¥..) <e¢ (=
0,1, ---,n — 1).
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THEOREM 1. Suppose (M, d) is a complete well-chained metric
space and S(M) the set of all nonempty bounded closed subsets of
M. If f: M— S(M) is locally contractive, then f has a fived point.

Proof. Assume that ¢ < 1 and let x,, ¥, € M such that d(z,, ¥,) < s.
Then

D(f (), f(o)) = 1o, Yo) -

Now choose a positive number 7 < e —xe <1. Let x, be any ele-
ment in f(w,); then there exists by Lemma 1 an element y, < f(¥,)
such that

(@, ¥) = D(f (@), S () + 77 -
Hence
A, y) <re+7<Aet+e—re=c¢.
Next, let x, € f(«,); then there exists ¥, <€ f(y,) such that

d(x,, ¥,) = D(f(), f(y)) + 7
é )\;d(ﬂ’?l, yl) + 772 .

In general, for » > 0

A, ¥,) = DS (0-s), F(Wa)) + 77
and we can show by induction that
(1) W@,y Yu) < N'€ + N7 NP A oee + N0
Indeed,

NEe AN AN A e
<A + AN e — Ae) AT — Ne)P A+ - oo + (6 — N)”
SN 4+ ATHe — Ae) + AVHe — ne) + o 4 (8 — Ne)
=A%+ ("7l — Ame) + (AT — ATe) e e 4 (e — Me)
=c.

So if (1) is valid for »n = N > 0, let zy., € f(xy); then there exists
Yy+ € f(Yy) such that

@y i1 Yx+) = D(f(Ww), [(yy) + 77 = Ny, yu) + 77
< )\:(th '"I_ )\JN-—177 + NN—27]2 + e + 77N) _I_ 77N+1
— 7\;N+16 + 7\)N77 + >\1N—1772 _+_ c e + )\,77N + 7]N+1 .

Using this information we now construct a sequence in M as
follows: let ¥,, be an arbitrary element in M and let y,,<f(¥.0)-
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Consider the s-chain

Yoor Your ***s You = Y10 €S (Y0.0) »

so that d(¥: Yoir) <€ (¢ =0,1, ---,m —1). Since ¥,,€ (%), we
may choose ¥, € f(¥,,.) such that

(2) (Y100 Y1) = D(F Wo.0), fWo)) + 7«
Similarly, since ¥, , € f(¥,.), choose ¥, € f(¥,.) such that

AW Y1) = D W), F(Wod) + 7 -

Continuing along the e-chain, since ¥, ,_, € f(%, .-.), there exists y,,, =
Y20 € [(¥o,0) (L€, Yo € f(¥,,0)) such that

AYsn-1s Yi,0) = D Yo,0-1)s [(¥o,0)) + 7
Consequently,

W Vo) = Aoy V10) S 5 AW Yre0) < (N + )

Next, referring to (2), since ¥,,€ f(¥.,), there exists ¥, € f(y,,,) for
which

Y20 Y2,1) = DF (W0 [(#.)) + 7

and for Yo, n—1 ef(yl,n—l)’ we have ¥,., = ¥, ef(yl,'lb) (i-e-9 Ys,o0 ef(yz,o))
such that

A(Yz,n-1s Yo,n) = D(F Y1,n-0), F(W1,0)) + 77
Proceeding in this manner, and making use of (1), we get (for m > 0)
A Yty Ymord) <N + N7 AT A weee 9"

¢=0,1---,n—1). Now let z, =49,, so that z,¢cf(z,.), m=
1; 2" * 'y and Zpi1 = Ym+1,0 = Ym,ne Then

U, 2nid) £ 3, AWoiy Yrisd)
< A" + AT A NTEPE A4 e e 7).
To show that {z,} is a Cauchy sequence, let 8 = max(\, 7). Then
W2y Zmsr) < #(m + 1)B™,
and for 0 <1 < J
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Az 2) = S Az, 20
<n Sk + 1)
<3 (b + 1B

It is easily checked that d(z;, z;)—0 as ¢— oo, implying that {z,} is
a Cauchy sequence, which converges to some z €M by the complete-
ness of M.

Finally, since z, € f(2,.-,) and z,—2, f(2,.-))— f(?) and, by Lemma

2, z € f(2).

REMARK 1. Nadler [4] proved a similar theorem by a different
method under the additional assumption that each f(x) is compact.

2. Locally nonexpansive set-valued mappings. Let X be a
Banach space and C a subset of X. A mapping T:C — S(C) will be
called locally nonexpansive if there exists ¢ > 0 such that

D(T, Ty) = lle — yll ,

whenever ||x — y|| < ¢ and where D is again the distance in the
Hausdorff metric induced by d on S(M) (as usual, d(z, y) = ||z — y||
for all z, y e X).

THEOREM 2. Let X be o Banach space and C a compact star-
shaped subset of X. If T:C-— S(C) is locally monexpansive, then
there exists a point x € C such that x e Tx.

Proof. Let ¢ be the star-center of C and let {k,} be an increas-

ing sequence of real numbers converging to 1. Define U,: C— S(C)
by

Ux=1—Fk) + k,Tx,

where k,Tx = {k,y:yeTx}. Let 2z, yeC such that ||z —yl| <e.
Then D(Tz, Ty) < ||z — y||. Now for any two elements z'c Tz and
y'eTy

A —Fk)e+ ke — A —k)e—ky'l| =k |2 — .
Hence
DUz, Uy) =k, llz —yll .

Consequently, U, has a fixed point x,€C by Theorem 1. Since C is
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compact, there exists a subsequence {x,,} of {z,} converging to some
x€C, and because T is continuous,

Tx,,i — Tx .
Now

dist (¢, Tx,) = D(U,x,,, Tx,)
= D1 — k,)c + k, Tx,, Tx,,) — D(Tx, Tx) as 1 — oo .

Thus
dist (x, Tx) =0,

which implies that x € Tz, Tx being closed.
Theorem 2 and its point-to-point analogue generalize an earlier
theorem due to Dotson [2]:

COROLLARY. A nonexpansive self-mapping of a compact star-
shaped subset of a Banach space has a fixed point.

REMARK 2. Edelstein [3] has shown that a locally contractive
{nonexpansive) point-to-point mapping need not be globally contrac-
tive (nonexpansive). On convex sets, however, a locally nonexpan-
sive mapping is nonexpansive.
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