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Let G/H be a reductive homogeneous space with the correspond-
ing Lie algebra decomposition g = m + h where the complementary
subspace m satisfies the condition (ad H)m c m. It has been shown
that the G-invariant connections on G/H correspond to certain non-
associative algebras (m, a) and that these algebras, in turn, cor-
respond to certain local analytic multiplications on G/H. These cor-
respondences generalize many of the results of Lie theory; it has
been shown, for example, that there is a change of coordinates at
e = eH which makes the algebras associated with a local multiplica-
tion anti-commutative. However, if G/H has pseudo-Riemannian
structures and we require that the change of coordinate maps be
local isometries, then the existence of a change of coordinates which
gives an anti-commutative algebra is no longer guaranteed. Thus
it is natural to ask when an algebra (m, a) inducing a pseudo-
Riemannian connection is anti-commutative and it is shown in this
paper that a necessary and sufficient condition is basically that
(m, a) be power-associative.

1. Basics* Let G be a connected Lie group with Lie algebra g
and let H be a closed (Lie) subgroup with Lie algebra h. Then the
pair (G, H) or (g, h) is called a reductive pair if there exists a sub-
space m of g such that g — m + h (subspace direct sum) and
(ad H)m c m. The corresponding analytic manifold M — G/H is
called a reductive homogeneous space and m is identified with the
tangent space M-e. For a reductive space with a fixed Lie algebra
decomposition g — m + h it is shown in [2], [6] that there is a 1-1
correspondence between G-invariant connections V and nonassociative
algebras (m, a) with ad H c Aut(m, a), (a is the bilinear algebra
multiplication on m and Aut(m, a) is the automorphism group of the
algebra (m, a).)

A G-invariant pseudo-Riemannian connection on a reductive
homogeneous space G/H corresponds to an algebra (m, a) with a
nondegenerate symmetric bilinear form C such that for all X, Y, Z em
and Ueh

(1) C((ad U)X, Y) + C(X, (ad U)Y) = 0 and

(2 ) C(a(Z, X), Y) + C(X, a(Z, Γ)) = 0 .

We denote such algebras by (m, a, C) and they are discussed in
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[4], [6], [7]. In particular since the torsion tensor is zero we have
from [2] that for X, Yem

( 3) a(X, Y) - a(Y, X) = XY

where we use the notation XY = [X, Γ]w(resp. h(X, Y)) for the pro-
jection of [X, Y] in g onto m (resp. h). Thus the algebra (m, a, C)
is reductive Lie admissible [5] and in particular for h = {0} the
algebra (g, a, C) is Lie admissible [1].

As an example let π: G —> G/ff be the canonical projection of G
onto the reductive space G/H. For any Xem the curves 7(£) = π
exp ί-XΓ are geodesies relative to the G-invariant pseudo-Riemannian
connection V given by (m, a, C) if and only if α(X, Y) = (1/2)IΓ,
This connection is called the pseudo-Riemannian connection of the
first kind [2], [4] and we use the notation (m, (1/2)ZF, B) for the
corresponding algebra where B now denotes the nondegenerate form.
In particular, let g and h be semi-simple and let Kill denote the
Killing form of g. Since Kill | h x h is nondegenerate we can write
g — m + h with m = h1 relative to the Killing form. Thus (g, h)
is a reductive pair. The form B — Kill \m x m and the multiplica-
tion α(X, Γ) = (1/2)17 give an algebra (m, (1/2)XΓ, 5) which satisfies
conditions (1) and (2) and therefore induces a pseudo-Riemannian
connection of the first kind. (One, of course, considers B = —Kill
I m x m in case Kill | m x m is negative definite as is the case for
G = SOfa) and H - S0(fc).)

Now let the reductive space G/H have a pseudo-Riemannian
connection of the first kind given by the algebra (m, (l/2)XY, B)
and suppose G/H has another pseudo-Riemannian connection given
by the algebra (m, a, C). Then the nondegeneracy of B and C
implies the existence of an SeGL(m) such that

C(X, Y) - B(SX9 Y)

for all X, Yem. Also by the symmetry and equation (1) we obtain

(*) Sb = S and [ad U, S] = 0

for all Ϊ7e A, where 6 denotes the adjoint relative to B. In [3], [4], [6]
it is noted that the set, J, of endomorphisms of m satisfying (*)
forms a Jordan algebra relative to the usual multiplication SX'S2 =
(1/2)(SLS2 + S2St). Also the formula for a is given by

2α(X, Y) = XY + S-^XOSΓ) - (SX)F]

where XY=[X, Y]m is the multiplication in the algebra (m, (1/2)XΓ, B).
Many examples of the algebras (m, αr, C) determined by the Jordan
algebra J are given in [4]. In the next section we discuss some of
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the algebraic identities which these algebras may satisfy. These
identities for the algebras (m, a, C) are related to isometric coordinate
changes and iϊ-spaces (G/H, μ) as discussed in [7].

2* Power-associative algebras* An algebra A over a field F is
power-associative if every element XeA generates an associative
subalgebra F[X]; see [9]. We now assume the algebra (m, α , C)
discussed in § 1 is power-associative and use the notation Xn =
a(X, , a(X, X)* •) where X occurs n times; this notation is used
only for the algebra (m, cc, C) and is not to be confused with the
product XY in (m, (1/2)17, B). The following result indicates that
an algebra (m, a, C) which defines an invariant Riemannian connec-
tion on a reductive space G/H does not satisfy the "usual" identities
unless the algebra is anti-commutative; that is, unless the connection
is of the first kind.

THEOREM 1. Let (G, H) be a reductive pair with a corresponding
Lie algebra decomposition g = m + h.

(a) // the algebra (m, a, C) defines an invariant Riemannian
connection on G/H, then a(X\ X) — a(X9 X2) if and only if
a{X, 7) = (1/2)17 for all X, Fern.

(b) Let G/H have an invariant Riemannian connection of the
first kind which is determined by the algebra (m, (1/2)XY, B). If
the algebra (m, a, C) defines an invariant pseudo-Riemannian con-
nection on G/H, then the algebra (m, αr, C) is power associative if
and only if a(X, Y) = (1/2)17 for all X,Yem.

Proof. Since an anti-commutative algebra is power-associative,
we need only prove the converses of the above statements.

(a) From formula (2) the positive definite form C must satisfy
C(V, a{U, V)) = 0 for all U, Vem. Now using this and formula (2)
we see that for any Xem

C(a(X, X), a(X, X)) = - C(X, a{Xf a(X, X)))

= - C(X, a(a(X, X), X))

= 0 .

where the identity a(X, X2) = a(X2, X) is used for the second equality.
Thus a(X, X) = 0. Using (3), we obtain a(X, Y) = (1/2)17.

(b) If we are given an algebra (m, (1/2)17, B) which induces a
Riemannian connection of the first kind and a second algebra (m, αr, C)
which induces another pseudo-Riemannian connection, then, as
remarked in § 1, we can write C(X, 7) = B(SX, 7) and 2a(X, 7) =
1 7 + S~l[X(SY) - (SX)Y] for some SeGL(m). Using the fact
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that the positive definite form B satisfies B(ZX, Y) + B(X, ZY) = 0,
we now show that the algebra (m, a, C) has no nonzero idempotent
elements. For suppose E — a{E, E); then from the above formula
E = S-^EiSE)] so that SE - E(SE). From this SE = E(E(SE)) and
therefore

B(SE, SE) = B(SE, E{E{SE)))

= -B(E(SE)9 E(SE))

= -B(SEf SE)

so that B(SE, SE) = 0 and SE = 0. As S is nonsingular, .E = 0.
Since the power-associative algebra (m, αf, C) contains no idem-

potents, the associative subalgebra F[X] generated by any J e m is
nil [9; Prop. 3.3]; that is, for each Xem, there exists a positive
integer p such that Xp = 0 in the algebra (m, α, C). By power-
associativity if Xr+t = 0 for positive integers r and ί, then

0 = Xr+i - α(jr, X*) = i- jfrJSΓ* + — [X^SZO - (SX r)^Ί

Thus using a(X, Y) - a(Y, X) = XY we also see XrXι = α(X% X1)-
a(X\ Xr) = Xr+t - Xr+t - 0 which implies

(4) X^SX') = (SXr)X*

whenever Xr+t = 0.
We now show Xz — 0 implies X2 = 0. For suppose X3 = 0; then

from formula (4) we obtain

X(SX2) = (SX)X2 .

Using the formula for a(X, Y) we note SX2 - X(SX) and have

B(SX\ SX2) = B(X(SX), SX2)

= -B(SX, X{SX2))

- -B(SXf (SX)X2)

- -B((SX)(SX), X2)

- 0

using the anti-commutativity ZZ = 0 in (m, (1/2)17, B). Thus
SX2 = 0 which implies X2 = 0.

Next we show Xn+1 — 0 implies Xn = 0 for w ̂  3 and consequently
by induction X%+1 = 0 implies X2 — 0. For suppose Xn+1 = 0; then
jpu-i _ Q a n ^ from formula (4) we obtain

X(SXn) - (SX)Xn and X^^SX^) - (SXn~1)Xn .

Using these we see
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n-\ X(SXn))

= -B(SXn~\ (SX)Xn)

= BftSX'-^X*, SX)

and

B((SX)Xn~\ SXn) = B(SX, X'-'

Thus using X^JSΓ - a{X«~\ X) - a(X, X«~ι) = X" - 1 * = 0, we
obtain 2S1* = XίSJSΓ -1) - ( S I ) ! * " 1 and

2B(SX*, SXn) = BiXiSX*'1) - (SX)Xn~\ SXn)

= 0

and therefore Xn = 0. Since the algebra (m, α, C) is nil, we have
for every Xem that Xp = 0 for some integer p. Thus by the above
0 - X2 = a(X, X). Using (3), we obtain a(X, Y) - (1/2)17.

REMARKS. The conclusion of Theorem 1 that a(X, Y) = (1/2)XY
need not imply the forms B and C are equal. However, let us
consider the algebra (m, (1/2)17, B) as given where we can assume
B is just nondegenerate. Then the endomorphism S which deter-
mines C for another algebra (m, a, C) with a(X, Y) = (1/2)17 is in
the multiplication centralizer of (m, (1/2)17, B). To see this first
recall that the multiplication centralizer, Γ, of the algebra
(m, (1/2)17, B) consists of those endomorphisms T of m satisfying
L(X)T=TL(X) for all Xem, where L(X):m~>m: 7 - 1 7 . In
[9; p. 15] the multiplication centralizer is discussed in general. It is
proven that Γ is a subalgebra of the algebra of all endomorphisms
of m and if the algebra (m, (1/2)17, B) is simple, Γ is a field. Now,
to see that S is in Γ we use formula (2) and a(X, 7) = (1/2)17 and
note that

B(S(XY), Z) - C(XY, Z)

- 2C(α(l, 7), Z)

= -2C{Y,a{X,Z))

= -C(Y,XZ)

= -B(SY, XZ)

= B(X(SY), Z) .

Since B is nondegenerate, S(XY) = JSΓ(iSΓ); that is, SL(X) = L(-X")S
which implies S eΓ. Conversely, a nonsingular endomorphism S in
Γ Π J determines an algebra (m, a, C) with α(X, 7) - (1/2)17. In
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particular, if S is chosen so that C is positive definite, then the cor-
responding connection is Riemannian.

As an example, let the pseudo-Riemannian connection determined
by the nonzero algebra (m, (1/2)J7, B) be holonomy irreducible.
Then as discussed in [3], [4], [6], the algebra (m, (1/2)17, B) is simple.
If we require that the algebra (m, (1/2)XY, C) be such that C is
positive definite, then the following computations prove S is sym-
metric relative to C. For X, Yem,

C(X, SY) = B(SX, SY)

= B(SY, SX)

= C(Y,SX)

= C(SX, Y)

so that Sc — S, where c denotes the adjoint relative to C. There-
fore, S has a nonzero real characteristic root λ and the characteristic
root space n = {Xe m: SY = λ Y} is a nonzero ideal of (m, (lβ)XY, B);
this uses L(X)S = SL(X) for all Xem. Since (m, (1/2)17,5) is
simple, we see n — m and consequently S = λJ; thus the original
form I? must be definite in this case. More generally, if
(m, (1/2)17, B) is semi-simple (that is, a direct sum of simple ideals),
then the corresponding S is diagonalizable. These semi-simple
algebras often occur when g and h are semi-simple Lie algebras as
discussed in [4], [8].
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