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In this note the continuous algebraic i£-theory groups of
a complete discrete valuation ring are described as the in-
verse limit of the ordinary algebraic ϋΓ-theory of its finite
quotient rings.

In [4] we defined continuous algebraic iΓ-theory groups KTV,
i ^ 2, both for a complete discrete valuation ring <? with finite
residue field of positive characteristic p and for its fraction field
and proved that K\°v agrees with the fundamental group of the
special linear group as defined in [2] by means of universal topological
central extensions. The definition of Kfv in [4] is in terms of BN-
pairs and is similar to the theory K?N of [5] which is known [6] to
deloop to ordinary algebraic Z-theory. The purpose of this note is
to deloop KVv{έ7) in the sense of the following result: Let & n &
be the maximal ideal and let Kt be the algebraic Z-theory groups
of Quillen [3].

THEOREM. For i ^ 2 there is a natural isomorphism

In a forthcoming paper of the author and R. J. Milgram, this equa-
ation allows us to use the continuous cohomology of SL(Ϊ, #) to
compute the rank of the free part of Kfv{έ?) as a module over the
p-adic completion of the rational integers.

In § 2 a step in the proof of this theorem is used to describe
the homotopy fiber of BE(A)+ —• BE(A/J)+ where J is an ideal in a
commutative ring A such that 1 + JaA*. At least, we construct
a space B{ UF(A, J)}+ whose homotopy groups fit into the appropriate
exact sequence.

Actually, in this paper we shall let

K?v(έ?) = lim [lim πt^ Sϋop(ί, έ?)]
m]n I

whereas in [4] the order of the inverse and direct limits is reversed.
The above definition is perhaps better as it still gives the main
results of [4]. To see the two are the same one would have to
prove that

• > π^ SLΓ (ί, ^ ) > Ki-, SUOP (I + 1, ^ )
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eventually stabilizes to an isomorphism.
The theorem makes it clear that the natural map

comes from the ring maps <?

l Delooping* Let n and I be fixed. The main step is to prove

PROPOSITION 1.1. There is a natural homotopy equivalence

SLαδ (I, έ?/^n) s SLΓ (I, <?)

such that if m\n there is a homotopy commutative diagram

SLαδ {I, ^l^n) = SUop (I, 6?)

SLαδ (I, <??/^) = S L r (I,

See [4] for notation. From this result and [6] we see that for i ^ 2

Km π,_λ SLΓ (I, <?) - lim π^ SLα61,

Here SLαδ (A) of [4] is the same as EBN{A) of [5]. The main theorem
now follows from commutativity of (*).

For simplicity of notation let Sι = SLαδ (I, ̂ \^n) and Tt =
SL^op(Z, ^ ) . Let Pz(resp. Qι) be the complex whose &-simplices are
(k + l)-tuples (Fo < Fi< <JPΛ) where Ft is a linear (resp. affine)
facette or Rι. PιaSι by the imbedding F-*UF and QιaTι via
F->U%. Let stj(z/)<Q* be the star of J consisting of all affine
f acettes F such that Δ < F. Let Kt < Tx be the subcomplex whose
A-simplices (α'0 17$Q < <α'fc E7£t) have ί7* 6 st, (Δ).

Now for each affine facette F e stz (zί) there is a unique linear
facette F' which contains F such that F < G implies F' < (?'. The
map stι(Δ)—*Pι sending F to Ff is an isomorphism of partially
ordered sets. Let π: SL (I, &) —> SL (Z, έ?/.^n) be reduction modulo
^*\ We claim that

(1.2) τr(^;)= ?7^

for F e s t , ^ ) . This is clear for the fundamental chamber C = {xι +
1 > &! > > xj and also for any F <C. For an arbitrary F e stz (J)
choose an element w of the linear Weyl group Wo so that w-F <C.
Thus by [4, Lemma 3]
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Moreover for each F e stj {Δ) we have

(1.20 π~\UF) - Ui

These two equations imply the correspondence

α' Up >π(a) UF,

preserves order and defines a simplicial isomorphism Kt —> St. Hence
to prove (1.1) it suffices to show Kt is a deformation retract to Tt.

Let / ; g: Qι —> Qι be two simplicial maps arising from order
preserving maps of vertices.

LEMMA 1.3. There is a triangulation (Qι x I) ' of Qt x I as a
partially ordered set which refines the standard triangulation
leaving Qι x 0 and Qι x 1 fixed and there is a simplicial map
w: (Qι x /) ' -> Qι such that

(a) w I Qι x 0 = / and w \ Qι x 1 = g
(b) if σ = (vQ < < vn) is a simplex of the standard triangula-

tion Q x /, v e σ is a vertex in the new triangulation, and etj(X)
is in UliVs) for 0 <; s ^ k, then

eίό{\) 6 Ul{v) .

This is the affine analogue of Lemma 3.3 of [6] and the proof is
similar. For (b) compare (B) of Lemma 4 of [4].

Now let r: Qι -* stz (J) c Qι be defined by

the unique affine facette of stz(zί) which is

contained in the same linear facette as F.

This is an order preserving map which is the identity on stz {A).

LEMMA 1.4. For each affine facette F we have Up c ϊ/?^,.

Proof. If w e Wo» then w-r(F) = r{w F) and w-F^-w'1 = ί/̂ .̂ ;
so by choosing a w such that w F is contained in the closure (70 of
the fundamental linear chamber Co = {̂  > > a?,} we can assume
FdCQ. In this case r(F) = C. When i > i, β< — βjr ^ 0 on F; so
for the generator eiά(X) of U% the element λ e ^ can be arbitrary
and etj(X) e Un

c. When i < i, β, - e ^ O o n ί 1 so &(F, β< - βy)n ^ ^ =
k(C, βi — βj)n; hence any generator β4i(λ) of Z7; also belongs to IT'S.
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We can now complete the proof of (1.1). Apply Lemma 1.3 in
the case / = id and g = r to get w: (Qι x J)' —> Qι satisfying (a) and
(b). The map p:Tι—*Qι taking a-UF to F is nondegenerate on
simplices and so is p x 1: T, x J —>Qι x I. Therefore the triangula-
tion (Qι x / ) ' induces a subdivision (Tt x /) ' of Tι x I. Let σ =
(α'0 Ϊ7j?o < < cck UFk) be a simplex of Tι and let v be a vertex of
<7 x I. Let u = (p x l)(v). By (1.4) we have UFo c CT ,̂,. Hence by
(b) of (1.3) we still have

(1.5) UΐoaUliv)

if v is any vertex of (σ x I)\

Let R: 2 W T, be defined by R(a U$) = a- Un

HF). This retracts
Tι onto Kt. Define a homotopy iϊ: (Γz x ! ) '-> Γz from the identity
to i? as follows: Let v be a vertex (σ x I) ' and let u — {p x l)(v).
Let

Then (1.5) shows this is independent of the choice aQe U%0 so we get
a well defined map.

2* A fibration in if-theory* Let A be a commutative ring and
Ja A be an ideal such that 1 + J c i * . Then K^A)->KlAjJ) is
surjective for i — 1, 2. In this section we build a space B{UF(A, J)}+

such that for ί ^ 2 there is a natural exact sequence

(2.1) > Ki+ί(A/J) > πtB{ UF(A, Jψ

> K<{A/J) >

Let Pι denote the set of linear facettes in Rι and identify Pι

as a subset of Pι+1 by the map

(a?!, , xt) • (x19 •••,»!, a?ί) .

Let P°° = ΌιPι. If FeP00 define the subgroup UF(A, J) of the
group E(A) of elementary matrices to be the one generated by

(a) βijix) where λ e A for et — eό > 0 on F
(b) βί:? (λ) where λ e J for et — βy < 0 on F
(c) diagonal matrices diag {1 + λly , 1 + λr} of determinant

one where λ* e J.
If F< G, then C7F(A, J) < UG(A, J). When J = 0, we just get the

groups ΪTp of [4] and ]5]. In this case we write UF(A, J) = t/^A).
Let π:E(A)—>E(A/J) be reduction mod J. Then as in (1.2) and
(1.2)' we have

(2.2) π[UF(A, J)]= UF{AjJ) and π~"[UF(A/J)] = C7 (̂A, J ) .
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Let B{ UF(A, J)} be the realization of the simplicial space which
in dimension k >̂ 0 is the disjoint union of the spaces

(Fo< . . . <Fk) xBUFo(A,J)

where F^P00. Let E{a- UF(A, J)} be defined as the pullback

E{a-UF(A,J)} >EG

I I
B{Ur(AfJ))

where G = E(A). When J = 0 we recover E{a UF} as in [1], More-
over just as in [1] the space E{a UF{A, J)} has the homotopy type
of the space EBN(A, J) whose λ -simplices are (k + l)-tuples

σo UFQ(A, J)< < αv UFk(A, J)

where a UF{A, J)<β- UG(A, J) iff F< G and a- UF{A, J)<zβ UG{A, J).
As in [1] we have a homotopy fibration

E{a- UF(A, J)} > B{ UF(A, J)} > BE(A) .

Suppose for the moment we have

LEMMA 2.3. πxB{ UF(A, J)} is perfect.

Then essentially the same argument as in [1] shows that

(**) E{a- UF{A, J)} > B{ UF(A, Jψ > BE(A)+

is also a homotopy fibration. It follows from (2.2) that the map

EBN(A,J) >EBN(A/J)

given by α UF(A, J) ^ π ( α ) . UF(A/J) is an isomorphism. By [6] we
therefore have ni_JEBN{A, J) — K^A/J) and the homotopy sequence
of the fibration (**) gives (2.1).

To prove the lemma, it is enough to show the generators are
products of commutators and the formula w-UF-w~ι = UU.F reduces
the argument to the case where F = Co = {x1 > x2 > > xJ con-
sidered as lying in Pι. Here I :> 3. For generators ei3{X) of π^BUc)
the third Steinberg relation eiS(aβ) = [e^ά), ejk(/3)] shows β<5 (λ) is a
commutator: for example, if λ 6 J we have β21(λ) = [β23(l), β31(λ)]. Now
consider the generators (^ !J_Λ, λ e 1 + J, where λ is in the ith row
and ίth column and λ"1 is in the i th row and ith column. For sim-
plicity take i = 1 and j = 2. Recall that if M, Ne UF are considered
as generators of πJSUp their composition as loops is homotopic to
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MN. Let λ = 1 + o and λ"1 = 1 4- r where τ, σej. We have the
following matrix identity valid in E(A):

X 0 \ (1 X\f 1 OW 1 0\/l σ\ίl 0\/l - 1

0 λ- ι]~iθ l)[-τ l/\-l 1/VO 1/\1 l/\0

Thus modulo the commutator subgroup

λ 0 \ / 1 0 \ / l σ \ ί l 0 \ / l + σ σ

0 λ"1/ ~~ \ - l lj\0 1/\1 1/ " \-σ 1-σ

Now let i? = {a?! = a?2 > — > a?z} and CJ = {a?2 > ^ > > α?J. We

have UCOZDUDCZUC>O and the matrix (__^.+ σ ^ ^ j ties in ε/Ί>. Each

o f ( - 1 l ) ' (θ ί ) ' a n d ( l l ) h e l o n g t o u<>i a n d t h e r efore by the above
argument lie in the commutator subgroup. Therefore so does
( Z f .̂)> a n d we conclude that the loop (Λ .-Λ lies in the com-
mutator subgroup.

It is probably true that

B{UF(A, Jψ > BE(A)+ > BE(A/J)+

is a homotopy fibration.
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